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Summary

Technology scaling and reduced operating voltages have rendered soft errors
or transient faults of critical concern with respect to reliability in modern-day
computer systems. Soft errors due to radiation and energy particle strikes may
result in spurious bit flips that corrupt the architectural state leading to re-
duced system reliability, increased vulnerabilities, unexpected data loss, and
catastrophic system crashes. Memory structures such as caches and transla-
tion lookaside buffers (TLBs) are commonly protected using error detection and
correction. Core microarchitecture on the other hand is more difficult to pro-
tect and has become increasingly vulnerable to soft errors not just because of
technology scaling, but also because of microarchitecture enhancements. Sev-
eral of the superscalar out-of-order core structures, such as the reorder buffer
(ROB) and issue queue, have increased dramatically over the past decade,
e.g., the ROB and issue queue increased from 128 and 36 entries in Intel’s
2008 Nehalem microarchitecture, to 224 and 97 entries in the current Skylake
microarchitecture, respectively. Larger structures contain more architectural
state and therefore increase the vulnerability to soft errors.

The research conducted in this dissertation focuses on mitigating the chance
of an application encountering soft errors in modern processors. We have tack-
led the problem of high soft error vulnerability along three axes. First, we tackle
soft error vulnerability on heterogeneous chip-multiprocessors (HCMPs). We
propose reliability-aware scheduling to map applications to core types to reduce
vulnerability to soft errors in heterogeneous multicores. Second, we observe
that a large core microarchitectural state is maintained inside an out-of-order
core, especially while running memory-intensive applications. In response, we
propose dispatch halting to minimize the amount of vulnerable state in the core
when load instructions access memory. Third, we analyze the vulnerability re-
duction delivered by runahead execution, an effective prefetching technique.
Runahead execution improves reliability as it executes instructions specula-
tively. We contribute precise runahead execution, a new runahead execution
paradigm that outperforms prior runahead proposals while improving reliabil-
ity compared to an out-of-order processor.

Improving Reliability on Heterogeneous Multicores. Reliability-aware
scheduling minimizes the vulnerability of a multiprogram workload running on
an HCMP. The HCMP in our setup offers two core types: big out-of-order

xv
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cores and small in-order cores. The vulnerability of an application running on
a core is determined by three key factors: (1) the size of the core microarchi-
tecture structures, (2) the number of processor bits exposed by the committed
instructions of an application, and (3) performance of the application on the
core. We demonstrate that a straightforward characteristic of an application,
such as memory intensity or compute intensity, is not indicative of the overall
vulnerability of the application. In fact, the net vulnerability of an application
is the outcome of a complex interaction of various application characteristics,
and a dynamic mechanism must be developed for executing an application on
the most appropriate core type in an HCMP.

We also observe the lack of a suitable reliability metric for multiprogram
workloads executing on an HCMP. While soft error rate (SER) accurately cap-
tures the vulnerability of a single program on a core, SER cannot be used as a
metric to assess the vulnerability of an application running as part of a multi-
program workload in an HCMP. This is because SER does not account for the
performance impact of shared resource contention and core heterogeneity in an
HCMP. We introduce a novel metric, system soft error rate (SSER), that ac-
counts for the impact shared resource contention and core heterogeneity has on
per-application performance. The reliability-aware scheduler monitors vulner-
ability on either core type for all of the co-running applications, and schedules
the applications to big and small cores for improved overall system reliability.
The scheduler adapts to dynamic phase changes during application execution
while relying on SSER for quantifying the system reliability of multiprogram
workloads. The scheduler leverages a counter architecture to track occupancy
in various hardware structures. Relative to a performance-optimized scheduler,
the proposed reliability-optimized scheduler improves soft error reliability by
25.4% on average degrading performance by only 6.3%.

Improving Reliability on Out-of-Order Cores. Modern out-of-order cores
feature large microarchitectural structures including the ROB, issue queue, load
queue, store queue and register file. Since the instructions are committed in
program order, if the instruction at the head of the reorder buffer is a long-
latency load waiting for data to return from memory, all instructions following
the load also wait inside the pipeline, thus getting exposed to soft errors. For
memory-intensive applications, we show that 67% of the soft error vulnera-
ble state is exposed while waiting for memory accesses. Dispatch halting is
a microarchitectural technique to prevent instructions from encountering soft
errors during memory accesses. Dispatch halting has two variants: proactive
dispatch halting and reactive dispatch halting. Proactive dispatch halting relies
on a load miss predictor to predict long-latency load instructions, and halts the
dispatch after a long-latency load. All instructions after the load are buffered in
the front-end. To compensate for the performance degradation caused by not
generating memory-level parallelism after the load, proactive dispatch halting
speculatively executes a copy of the selected instructions from the buffered in-
structions. Reactive dispatch halting, in contrast, does not employ a predictor.
Instead, it waits for the back-end to be static for sufficient time, and then marks
the back-end as speculative. Reactive dispatch halting also buffers instructions
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in the front-end and replays them when the long-latency load is about to return.
By building on the premise that it is better to speculate than execute normally
under a memory access, dispatch halting is able to improve the mean time to
failure for a set of representative memory-intensive benchmarks by more than
2×.

Evaluating Reliability and Performance of Runahead Execution. In
addition to exposing soft error vulnerability, it is equally detrimental to perfor-
mance when the head of the ROB is blocked by a long-latency load instruction.
In runahead execution, once the ROB fills up after a blocked head, the proces-
sor enters into speculative mode, and executes future instructions speculatively
to generate memory prefetches. When the blocking load returns, the pipeline
is flushed and the core fetches and processes instructions again starting from
the blocking load. Runahead buffer, the latest improvement upon runahead
execution, finds the most dominant chain of instructions leading to a blocking
load, and stores it in a buffer. The chain of instructions is then executed from
the buffer and the front-end is turned off to save power. Runahead execution
executes instructions speculatively, hence it does not expose vulnerable state
in this duration.

We identify three major shortcomings for runahead execution: (1) flush-
ing and refilling the pipeline incurs overhead, (2) prefetch coverage is lim-
ited, and (3) runahead does not exploit short runahead intervals for generating
prefetches. We propose precise runahead execution (PRE) to eliminate these
shortcomings. PRE builds on the key observation that when entering runa-
head mode, the processor does not need to release state as it has enough issue
queue and physical register file resources to speculatively execute instructions.
PRE instead uses a novel register renaming mechanism to quickly free physical
registers in runahead mode. In addition, PRE pre-executes only those instruc-
tions in runahead mode that lead to blocking load instructions. Finally, PRE
optionally buffers decoded runahead micro-ops in the front-end to save energy.
For a set of memory-intensive applications, we show that PRE achieves an ad-
ditional 18.2% performance improvement over the recent runahead proposals
while at the same time reducing energy consumption by 6.8%. PRE improves
soft error reliability by 28% on average, compared to an out-of-order processor.





Samenvatting

Steeds kleinere transistors en gereduceerde voedingsspanning hebben van
betrouwbaarheid met betrekking tot tijdelijke fouten (Eng. soft errors of tran-
sient errors) een belangrijk ontwerpscriterium gemaakt. Een tijdelijke fout
treedt op ten gevolge van kosmische straling of energiedeeltjes en kan leiden
tot bitfouten die de architecturale toestand compromitteren. Dit kan leiden
tot incorrecte uitvoeringen, onverwacht dataverlies en systeemfalen. Geheugen-
structuren zoals caches en TLBs (Eng. translation look aside buffers) worden
typisch beschermd m.b.v. foutdetectie en -correctie. De structuren in de pro-
cessorkern zijn daarentegen moeilijker te beschermen. Deze structuren zijn niet
enkel vatbaarder geworden voor tijdelijke fouten door technologieschaling maar
ook door wijzigingen in de microarchitectuur. Verschillende structuren in een
hedendaagse out-of-order processor zijn dramatisch toegenomen in afmetingen,
b.v., het reorder buffer (ROB) en het uitvoeringsbuffer (Eng. issue buffer) zijn
toegenomen van respectievelijk 128 en 26 elementen in Intel’s Nehalem mi-
croarchitectuur uit 2008 tot 224 en 97 elementen in de hedendaagse Skylake
microarchitectuur. Grotere processorstructuren bevatten meer architecturale
toestand en zijn dus meer vatbaar voor tijdelijke fouten.

Dit doctoraat heeft als doel het verbeteren van de betrouwbaarheid in
hedendaagse processors door de kans op een tijdelijke fout te reduceren. Dit
gebeurt op drie fronten. Ten eerste pakken we betrouwbaarheid aan in hete-
rogene chip-multiprocessors (HCMPs). We stellen een nieuwe techniek voor,
reliability-aware scheduling, die de betrouwbaarheid van een HCMP verbetert
door toepassingen dynamisch in te roosteren op verschillende processortypes op
basis van de uitvoeringseigenschappen van de toepassingen. Ten tweede stellen
we vast dat een hedendaagse out-of-order processor een grote architecturale
toestand opbouwt, in het bijzonder bij uitvoering van geheugenintensieve com-
putertoepassingen. We stellen dispatch halting voor, een techniek die de vatbare
toestand in de processor reduceert wanneer leesoperaties in de processorkern
wachten op het geheugen, en dit zonder aan prestatie in te boeten. Ten derde
bestuderen we de impact van runahead-uitvoering, een vorm van prefetching,
op betrouwbaarheid. We stellen precise runahead execution (PRE) voor om
tegelijkertijd de prestatie te verbeteren van runahead-uitvoering en tegelijk-
ertijd de betrouwbaarheid te verbeteren t.o.v. een conventionele out-of-order
processor.

xix
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Betrouwbaarheid verbeteren in HCMPs. Een heterogene chip-
multiprocessor bestaat typisch uit een aantal hoog-performante processorker-
nen en een aantal laag-vermogen processorkernen. Het inroosteren van com-
putertoepassingen op verschillende processortypes heeft een grote impact op de
betrouwbaarheid van een heterogene chip-multiprocessor. Door toepassingen
met verschillende uitvoeringseigenschappen in te roosteren op verschillende pro-
cessortypes kan het vatbaar zijn voor tijdelijke fouten aanzienlijk gereduceerd
worden. Het vatbaar zijn voor fouten wordt immers bepaald door drie fac-
toren: (1) de grootte van de verschillende structuren in de microarchitectuur,
(2) het aantal processorbits dat vatbaar is voor fouten tijdens de uitvoering
van een computertoepassing, en (3) de prestatie van de toepassing op elk van
de processortypes. We tonen aan dat het niet mogelijk is een eenvoudige eigen-
schap te bepalen die de betrouwbaarheid van een computertoepassing karak-
teriseert, zoals b.v. de graad aan rekenintensiteit of geheugenintensiteit. We
stellen echter vast dat het vatbaar zijn voor tijdelijke fouten het resultaat is van
een complexe interactie tussen verschillende uitvoeringseigenschappen van een
computertoepassing en de onderliggende hardware. We dienen dus een tech-
niek te ontwikkelen die de meest betrouwbare processorkern voor een gegeven
computertoepassing dynamisch bepaalt.

Om dit onderzoek te kunnen verrichten, dienen we eerst een metriek te
bepalen die de betrouwbaarheid van een HCMP quantificeert bij het simul-
taan uitvoeren van meerdere computertoepassingen. Ofschoon soft error rate
(SER) een nauwkeurige metriek is voor een enkele computertoepassing op een
enkele processorkern, is SER niet bruikbaar voor meerdere toepassingen op een
HCMP; SER houdt immers geen rekening met de impact van het delen van re-
sources en heterogene processorkernen. We stellen daarom een nieuwe metriek
voor, namelijk system soft error rate (SSER), die de impact van gedeelde re-
sources en verschillende processorkernen op de prestatie in rekening brengt bij
het bepalen van de betrouwbaarheid van een HCMP. De planner, de reliability-
aware scheduler, monitort de betrouwbaarheid van een computertoepassing op
de verschillende processorkernen en roostert de toepassingen vervolgens in op
de processorkernen teneinde de betrouwbaarheid van het ganse systeem te ver-
beteren. De planner past de inroostering dynamisch aan naargelang de uitvo-
eringskarakteristieken van de toepassingen. De planner maakt hierbij gebruik
van een tellerarchitectuur die de vatbare architecturale toestand bijhoudt in
de verschillende processorkernen. De voorgestelde planner verbetert de be-
trouwbaarheid van een HCMP met gemiddeld 25,4% met een kleine impact op
prestatie van 6,3% t.o.v. een planner die de prestatie maximaliseert.

Betrouwbaarheid verbeteren in een out-of-order processorkern.
Hedendaagse out-of-order processorkernen bevatten een aantal grote structuren
zoals het reorder buffer (ROB), instructiebuffer, leesbuffer (Eng. load queue),
schrijfbuffer (Eng. store queue) en het registerbestand. Vermits instructies de
architecturale toestand wijzigen in programmavolgorde, blokkeert de processor
vaak wanneer een leesoperatie dient te wachten op data van het geheugen.
De leesoperatie verhindert hierbij de daaropvolgende instructies waardoor een
grote architecturale toestand opgebouwd wordt in het reorder buffer die vatbaar
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is voor tijdelijke fouten. Voor geheugenintensieve computertoepassingen blijkt
67% van de toestand die vatbaar is voor tijdelijke fouten een gevolg te zijn van
leesoperaties die het reorder buffer blokkeren.

Dispatch halting is een microarchitecturale techniek die de betrouwbaarheid
van een processor verbetert in het geval van een geheugenoperatie. We stellen
twee varianten voor: proactieve en reactieve dispatch halting. Proactieve dis-
patch halting voorspelt toekomstige leesoperaties met een lange latentie (m.a.w.
leesoperaties die leiden tot een miss in de caches op de processorchip), en
blokkeert de dispatch trap in de processorpijplijn. Instructies opgehaald na
de leesoperatie worden gebufferd in het begin van de pijplijn. Teneinde geen
prestatieverlies te leiden, voert proactive dispatch halting deze instructies spec-
ulatief uit om onafhankelijke geheugenoperaties parallel te kunnen afhande-
len. Na het deblokkeren van de pijplijn worden de instructies opnieuw (niet-
speculatief) uitgevoerd. Reactieve dispatch halting daarentegen maakt geen
gebruik van voorspelling. Reactieve dispatch halting observeert de pijplijn en
indien de pijplijn blokkeert omwille van een geheugenoperatie, treedt de pijplijn
in speculatieve modus en worden toekomstige instructies speculatief uitgevoerd.
Dispatch halting verdubbelt de betrouwbaarheid van een out-of-order proces-
sorkern door de microarchitecturale toestand t.g.v. een leesoperatie speculatief
te maken, en dus niet langer vatbaar voor tijdelijke fouten.

Prestatie en betrouwbaarheid van runahead-uitvoering. Het
blokkeren van de processorpijplijn door een leesoperatie leidt niet alleen tot
de accumulatie van architecturale toestand die vatbaar is voor fouten, het leidt
ook tot een aanzienlijk prestatieverlies. Runahead-uitvoering is een microar-
chitecturale techniek waarbij de processor in speculatieve modus gaat wanneer
het reorder buffer vol is t.g.v. een geblokkeerde leesoperatie. Hierbij worden
toekomstige instructies speculatief uitgevoerd teneinde toekomstige geheugen-
operaties data te laten ophalen alvorens de computertoepassing de data effectief
nodig heeft (Eng. prefetching). Wanneer de leesoperatie de pijnlijn deblok-
keert, wordt de pijplijn genullifieerd en worden de instructies die speculatief
uitgevoerd werden na de leesoperatie opnieuw opgehaald en uitgevoerd, dit
maal niet speculatief. Runahead buffer, de meest recente verbetering t.o.v.
runahead, identificeert de meest dominante keten van afhankelijke instructies
van de blokkerende leesoperatie, bewaart deze in een buffer, en voert enkel
deze keten van afhankelijke instructies uit terwijl het begin van de processor-
pijplijn afgeschakeld wordt om energie te besparen. Runahead voert instructies
speculatief uit en genereert dus geen toestand die vatbaar is voor fouten.

We identificeren drie tekortkomingen m.b.t. runahead-uitvoering: (1) het
nullifiëren en opnieuw opvullen van de pijplijn leidt tot een niet te verwaar-
lozen overhead, (2) het aantal nuttige prefetches is beperkt, en (3) korte
runahead-intervallen worden niet geëxploiteerd. Om aan deze tekortkomin-
gen tegemoet te komen, stellen we precise runahead execution (PRE) voor.
De observatie waarop PRE gebaseerd is dat de processor voldoende resources
heeft om instructies speculatief uit te voeren wanneer runahead-uitvoering ges-
tart wordt. Het is m.a.w. niet nodig de processortoestand te nullifiëren. PRE
gebruikt een nieuw registerhernoemingsschema om fysieke registers te herge-
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bruiken tijdens runahead-uitvoering. Bovendien voert PRE enkel instructies
uit die leiden tot een blokkerende leesoperatie. Tenslotte houdt PRE optioneel
instructies bij in het begin van de pijplijn om energie te besparen. We tonen aan
dat PRE de prestatie verbetert met gemiddeld 18,2% en het energieverbruik
reduceert met 6,8% voor geheugenintensieve computertoepassingen t.o.v. re-
cent voorgestelde runahead-technieken. Bovendien wordt de betrouwbaarheid
verbeterd met gemiddeld 28% t.o.v. een conventionele out-of-order processor.
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Chapter 1

Introduction

Reliability is of critical concern for modern processors as a consequence of
the shrinking process technology and decreasing transistor geometries [31, 74,
77, 83, 129, 154, 178, 192, 222]. With each new generation, transistor count
has increased exponentially, as predicted by Moore’s law, leading to dense inte-
gration of transistors on chip. Such advancements have improved performance
manifold, however, the performance benefit had stifling consequences on power
and reliability. Although the power consumption of each transistor reduced
commensurate with its voltage and size, the power density of the chip con-
tinued to increase with technology scaling, producing extremely hot processor
chips that are challenging to cool.

Processor errors have also increased with device scaling. A processor can
encounter either a hard error or a soft error. A hard error implies a permanent
damage to the processor chip; hard errors are a result of defects in silicon. The
increase in temperature due to increased power accelerates processor wear-
out [193, 194], and the increase in the number of transistors increases the
number of defects [189]. A soft error, on the other hand, is typically caused
by external radiations; soft errors are temporary, random, and do not manifest
themselves again. Soft error rate increases with each technology generation:
From 180 nm generation to 16 nm generation, the soft error rate was expected
to increase by 100× [25]. Soft errors can severely undermine the reliability
of modern-day computer systems [31, 74, 77, 83, 129, 154, 178, 192, 222], as
soft errors may result in silent data corruptions or unrecoverable behaviors
like system crashes [17, 71, 105, 217]. While error detection and correction
techniques exist for on-chip memory structures such as TLBs and caches [8,
90, 130, 189], the core’s microarchitectural structures, in contrast, are hard to
protect. The vulnerability of the microarchitecture has also increased not only
because of technology scaling but also due to microarchitectural enhancements.

Improving application reliability to radiation-induced soft errors is the main
focus of this dissertation — we analyze soft errors encountered by programs
executing on modern processors, and propose cost-effective techniques to mit-
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igate them. A large body of work over the past two decades has targeted
soft error reliability, focusing on soft error estimation [120, 137, 144], model-
ing [22, 145, 191, 210] and optimization [30, 153, 190, 199, 214]. Earlier tech-
niques used radiation-hardened circuits [30] or some form of redundancy for
detection and recovery from soft errors [67, 170, 171, 186, 198, 209]. However,
these techniques incur significant performance, area and power overheads [136].
In general, reliability improvement requires some form of redundancy in time
and/or space, and the key challenge is to achieve minimal overheads in terms
of performance, area and power. The techniques proposed in this dissertation
achieve a significant improvement in soft error reliability while minimizing the
associated overheads. Techniques that tolerate long memory accesses by spec-
ulatively generating memory prefetches also improve reliability. We conduct a
reliability assessment of one such well-known technique called runahead execu-
tion. In runahead execution, once the instruction window of an out-of-order
processor is stalled on a memory access, the processor speculatively executes
future memory accesses to bring their data close to the core. We also elim-
inate the shortcomings of runahead execution and propose a novel runahead
technique to improve the performance of single-threaded applications on out-
of-order processors.

This chapter first provides a brief background on how device scaling trends
have resulted in increased power and reliability problems. We then explain
how extreme miniaturization, increased processor microarchitecture state, and
emerging trends towards heterogeneous computing systems have enabled an
exponential increase in soft error vulnerability on current processors.

1.1 Technology Scaling Trends

In this section, we recap how the quest for high performance through aggres-
sive device scaling was worthwhile for a long time, followed by ultimately slow-
ing down because of high power consumption, and how device scaling trends
have also lowered the reliability in modern processors.

1.1.1 Improved Performance through Scaling

In 1965, Gordon Moore made a prediction, known as Moore’s law [131], that
the number of transistors on a chip will double almost every year; this predic-
tion was later revised to the doubling of transistors every two years [132]. For
the next five decades, chip designers could reduce the size of a transistor and
integrate more transistors on the chip, leading to today’s billion-plus transis-
tor chips. In 1974, Robert Dennard laid out the rules, known as Dennard
scaling [52], for the scaling of various device and circuit parameters with the
transistor dimension. In particular, decreasing transistor size also requires an
equal reduction in the supply voltage to keep the electric field constant. The
switching charge of the transistor also decreases proportionately. At a lowered
switching charge, the transistor can switch at a much faster rate, improving
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delay of the circuit by the same factor. This faster switching with each new gen-
eration paved the way for continuous performance improvement of a processor.
A smaller transistor consumes less power; however, the power density of the
transistor remains constant. Precisely, reducing the dimension of a transis-
tor by a factor of k reduces the voltage, switching charge, circuit delay, and
current by the same factor of k, where k is a unit-less scaling constant. The
power consumption of the transistor decreases by a factor of k2 without af-
fecting its power density. Therefore, following Dennard scaling, the processor
performance can be improved by reducing the size of a transistor with each
technology generation while reaping the benefits of the constant power density
of the transistor.

In addition to technology scaling, microarchitectural innovations like
pipelining, out-of-order execution, branch prediction, and sophisticated
prefetching techniques contributed equally to the performance improvement
of the processor. The abundance of transistors led to an increasing size of the
core microarchitectural structures for improved performance. Overall, for in-
creased performance, hardware designers could integrate more transistors on
a given chip area and benefited from the better delay characteristics of the
transistors with scaling.

1.1.2 Increased Power through Scaling

Although the semiconductor industry benefited tremendously from the de-
vice scaling trends outlined by Dennard scaling, however, all but the supply
voltage did not scale according to the ideal rules set forth by Dennard scaling.
Over the generations, the supply voltage scaled at a much slower rate than the
dimension of a transistor. The growing difference in scaling trends between
the supply voltage and transistor size resulted in an increasing power density
of the chip. From the year 1980 to 2000, the microprocessor power increased
by about two orders of magnitude [68]. In the mid 2000s, the voltage scaling
trends — and frequency scaling trends in turn — encountered a complete halt
as a consequence of the processor power reaching unsustainable levels. The
critical concern of the increased total power was further exacerbated by the
leakage power. The leakage power was largely unnoticed for several years as
dynamic power was the key contributor to the total processor power. How-
ever, the leakage power started to dominate total chip power as supply voltage
approached threshold voltage. Ideally, a transistor is “off” below a threshold
voltage; however, in reality, there is always a leakage current flowing. With de-
vice scaling, both the supply and threshold voltages are reduced [103], but the
decreasing threshold voltage increases leakage power exponentially. Increased
power directly increases temperature, demanding better techniques for cooling
the chips. Therefore, it was apparent that reducing supply voltage further (and
threshold voltage in turn) could lead to extremely hot chips that can be cooled
only using special facilities (for example, liquid cooling). The phenomenon of
power constraints leading to the end of voltage and frequency scaling trends is
also termed as “power wall” [101]. Innovations leading to the design of mod-
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ern chip-multiprocessors [158] are in response to the restraints imposed by the
power wall. Although, computing industry soon realized that even powering
on more than a certain number of cores on a (processor) die simultaneously is
also limited by yet another phenomenon known as “dark silicon” [59] — one of
the reasons that the number of cores integrated on a general-purpose multicore
processor is typically limited to a (couple) dozen.

1.1.3 Soft Error Reliability

Analogous to the power wall, another equally precarious issue of reliabil-
ity crept in with device scaling. As transistor count increased, so did the
complexity of designs; the number of hardware defects increased and the chip
verification became an extremely difficult task. Even more prevailing were the
problems caused by lowered switching charge. At such low levels, the transis-
tors are extremely fickle, and a minor perturbation in the switching charge can
possibly change the state of the transistor. The minimum amount of charge
required to correctly distinguish the state of a transistor, SRAM cell or DRAM
cell is known as its critical charge. If an energy particle emanating from radia-
tions deposits a charge that surpasses the critical charge of a device, the state
of the device can temporarily flip, leading to a fault. An error caused by such
a fault is known as a transient error or soft error. Therefore, on present-day
processors, the successful execution of a program relies on a large number of
weak transistors as it executes through the pipeline.

1.2 Motivation

Radiation-induced energy particles — neutrons from deep space or alpha
particles emanating from the packaging material of a chip — can interact with
the charge representing the state of a semiconductor device, like a transistor
or an SRAM cell, and lead to a soft error. In this section, we motivate the
need to design novel mitigation techniques for improving soft error reliability
on modern processors.

1.2.1 Increase in the Rate of Soft Errors

Soft errors were not a serious reliability threat for general-purpose com-
puting systems before the mid 1990’s. However, with continued technology
scaling, as the operating voltage of a transistor approached to the threshold
level, the probability of a transistor encountering a soft error increased expo-
nentially [151]. There are three key contributors to the increased soft error
rates in modern chips. First, the switching charge of a transistor (or SRAM
cell), and its critical charge in turn, is lowered to a degree where it is severely
susceptible to be superseded by the charge deposited by an energy particle
strike; the state of the device can change at a much lower critical charge now.
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Second, the number of the particles of low energy is two orders of magnitude
more than the particles of high energy in the cosmic rays [182]. Therefore,
as the critical charge of a device decreases as a consequence of scaling, there
are more energy particles that can surpass the critical charge now, further ex-
acerbating the problem. Third, as predicted by Moore’s law, the number of
transistors per unit area of chip increased exponentially, and the number of
soft errors increases with the number of transistors. On the positive side, the
deposited charge also depends on the area of a circuit exposed to the radiation.
Therefore, the chance of a transistor encountering a soft error decreased in pro-
portion to its size; however, the reduced flux per transistor, and thus improved
soft error reliability per transistor, is easily overshadowed by the number of
transistors on a chip and the increased degree of susceptibility of each tran-
sistor to soft errors due to its reduced critical charge. Overall, device scaling
trends led to the development of smaller and faster devices, however, the same
trends rendered modern chips extremely vulnerable to soft errors [25, 151, 199].

1.2.2 Increase in Core Microarchitectural State

The improved performance of a transistor following technology scaling
brought a significant forward leap in the performance of microprocessors. Fur-
thermore, the microarchitectural innovations allowed processor designers to
push for even higher performance than predicted by the device scaling trends.
To extract maximum parallelism available in software, processor pipelines
became deeper and wider, allowing multiple instructions to be issued each
processor cycle. Each pipeline stage was stretched to the smallest possible
operation to minimize the clock period. Modern processors can dynamically
examine a large number of instructions, issue them out of program order, and
employ separate structures such as the load/store queue for better handling
of memory operations. For high degrees of instruction-level and memory-level
parallelism, there are hundreds of instructions in flight between the fetch and
retirement stages of the pipeline. The size of the microarchitectural structures
required to hold these instructions has also increased accordingly, leading to
the development of large monolithic processors.

Although today’s processor designers face several challenges for improving
the performance of out-of-order cores, nevertheless, the current size of these
cores already pose a severe reliability challenge. Especially, when a mem-
ory operation blocks the retirement stage of the pipeline, a large number of
instructions are waiting inside the core, occupying several microarchitectural
structures. An energy particle strike can easily change the state of an already
fragile processor bit, possibly causing an incorrect update to the application
state. Therefore, for applications frequently accessing memory, it is impera-
tive to devise novel solutions to minimize their soft error vulnerability. This
dissertation proposes one such technique — known as dispatch halting — that
more than doubles the mean time to failure of memory-intensive applications.
Latency-tolerant techniques that exploit speculation to improve performance
also improve soft error reliability. This dissertation further investigates the
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reliability improvement accrued by runahead execution, a well-known latency-
tolerant technique, and proposes precise runahead execution which achieves
much higher performance than the state-of-the-art latency-tolerant techniques.

1.2.3 Emergence of Heterogeneous Computing Systems

Chip-multiprocessors (CMPs) became widely popular in response to the
constraints imposed by the power wall [52, 158]. Inevitably, application behav-
ior and the requirement for resources vary not only across different applications
but also among disparate execution phases of the same application. Soon, it
was apparent that multiple homogeneous cores of a CMP do not match the var-
ied demands from all applications, and the computing landscape plunged into
an era of hardware heterogeneity or specialization. Heterogeneity can be no-
ticed today in multiple forms, for example, single-ISA heterogeneous processors
that support heterogeneity at the microarchitecture level [112, 113], processors
that integrate a GPU alongside a general-purpose CPU [7, 89, 97], and large-
scale accelerators [96, 164]. Consequently, a large number of on-chip cores
demand high memory bandwidth, pushing the need for heterogeneity to the
memory subsystem as well. Memory-side accelerators [81] and the integration
of die-stacked DRAM alongside the traditional DRAM [44, 123] are examples
of how high memory bandwidth demands from the processor chip led to the
development of novel hybrid memory technologies.

We target soft error reliability in single-ISA heterogeneous multicore
processors. Single-ISA heterogeneous chip-multiprocessors (HCMPs) were pro-
posed as an alternative to improve the throughput and energy-efficiency of
chip-multiprocessors (CMPs) [112, 113] designed using monolithic homoge-
neous cores. Industry examples of single-ISA heterogeneous multicores include
ARM’s big.LITTLE [72], NVidia’s Tegra [155], and Intel’s QuickIA [42]. The
fundamental observation underpinning the development of HCMPs is that the
applications running on a CMP are inherently diverse in nature, and therefore,
they have different computing requirements. Allocating equal computing re-
sources to all co-executing programs results in underutilized resources and poor
energy-efficiency. Additionally, applications exhibit different phase behavior at
runtime and it is better to assign resources according to an application’s run-
time demand. To adapt to the application characteristics at runtime, HCMPs
provides multiple core types — differing in their performance, complexity, and
power envelops — on the same chip. The applications are dynamically mi-
grated among different core types by system software, while maintaining far
superior energy-efficiency than their homogeneous counterparts. For multipro-
gram/multithreaded workloads comprising of more applications/threads than
the number of cores integrated in a given area of a CMP, HCMPs provide better
system throughput as well.

In contrast to the performance and power implications, how application
running on a heterogeneous system impacts the reliability of other co-executing
applications has been a largely unexplored topic. First and foremost, there is
not even a suitable metric available for quantifying reliability when multiple
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applications are simultaneously running on an HCMP. The research conducted
in this dissertation is the first to assess and improve the overall reliability of
multiple co-executing applications on a heterogeneous system.

1.2.4 Soft Error Reliability at Scale

Even though the chance of a single processor bit encountering a soft error
is rare, it poses a severe threat to the reliable operation of today’s high-end
supercomputing systems as well as safety-critical systems (e.g., autonomous
vehicles). For example, the 64 KB L1 caches of a 104 K-node BlueGene/L
system encounter one soft error every four hours [27]. In our analysis of the out-
of-order vulnerability in Chapter 4, the back-end comprises of approximately
5.6 KB (see Table 4.2). Under the same circumstances as the BlueGene/L
system, this translates into one soft error every two days. Two widely popular
metrics in the fault-tolerance community are failure in time (FIT) and mean
time to failure (MTTF). FIT rate is defined as the total number of errors in a
billion device hours [137], and MTTF represents the time between two errors,
and it is inversely related to the FIT rate. A recent neutron beam experiment
on an Intel Xeon Phi 3120A coprocessor chip (comprised of 57 in-order cores)
reported a FIT rate of 193 for the cores only [90, 156]. Summit is the current
fastest supercomputer with over 2 million cores [53]. Assuming the same FIT
rate as Xeon Phi, Summit cores encounter 1 error every 5.4 days. Note this is
even a conservative estimate as prior work reports an MTTF ranging between
6.5 to 40 hours in today’s petascale systems [58, 211]. Without proper soft
error mitigation techniques, MTTF in high-end systems will soon be lower
than their mean time to repair. In addition, soft error rates are often an order
of magnitude higher than hard error rates [88], and every increase in soft error
MTTF has a significant impact on the maintenance and operational cost of a
high-end system.

1.3 Key Contributions

Technology scaling, advances at the microarchitecture level, and the emer-
gence of hardware heterogeneity has put forward a soft error reliability chal-
lenge that requires novel mitigation techniques with negligible cost. In this
section, we present our contributions for improving soft error reliability on
commodity processors. We first introduce our novel reliability metric, system
soft error rate (SSER), for quantifying soft-error vulnerability on an HCMP.
Building on SSER, we present reliability-aware scheduling for improving soft-
error reliability of multiprogram workloads on HCMPs. We then focus on
out-of-order cores, and devise a microarchitectural technique, called dispatch
halting, for decreasing the vulnerability of single-threaded programs on out-
of-order processors. Additionally, we evaluate the reliability improvement in-
curred by different variants of runahead execution, a well-known mechanism
that improves both performance and reliability. Finally, we propose precise
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runahead execution, a latency-tolerance technique that achieves significantly
higher performance than prior runahead techniques while also improving reli-
ability compared to an out-of-order core.

1.3.1 Reliability Metric for Multiprogram Workloads

Soft error rate (SER) is accurate metric to capture the vulnerability of a
single-program workload. However, in an HCMP, multiple applications are con-
currently executing, and they impact the performance of each other because
of interference in shared resources. Adding raw SER numbers for each appli-
cation to calculate the overall soft error rate of an HCMP does not take into
account the performance impact applications have on each other. At any time,
one application can have a higher SER than others, however, the application
with lower SER can take much longer to complete its execution. Adding raw
SER values gives more weight to the application with higher SER and does not
account for the impact of performance on reliability. Therefore, we propose
system soft error rate (SSER), a new metric that accounts for the interaction
between performance and reliability. SSER weights per-application SER by its
relative slowdown while running on an HCMP with other applications.

1.3.2 Reliability-Aware Scheduling

An HCMP features different core types — for example, big out-of-order and
small in-order cores. Applications exhibit different soft error reliability char-
acteristics on big versus small cores. This provides considerable opportunity
to improve system reliability through scheduling on HCMPs. An oracle offline
analysis considering an HCMP with two small and two big cores shows that
reliability-aware scheduling can improve system reliability by 27.2% on aver-
age and up to 62.8%, while degrading performance by at most 7% on average
compared to performance-optimized scheduling.

Therefore, in this work, we propose a reliability-aware scheduler that sam-
ples the reliability characteristics of running applications on either core type,
and dynamically schedules applications on big versus small cores to improve
overall system reliability. The proposed scheduler leverages a low-overhead (296
bytes per core) counter architecture to track hardware occupancy. Reliability-
aware scheduling improves system reliability by 25.4% on average and up to
60.2% compared to performance-optimized scheduling, while degrading per-
formance by 6.3% only. The proposed scheduler is robust across core count,
number of big versus small cores, and frequency settings. Moreover, as a side
effect, reliability-aware scheduling reduces power consumption by 6.2% on av-
erage compared to performance-optimized scheduling.

This work was published in:

A. Naithani, S. Eyerman, and L. Eeckhout. Reliability-aware scheduling
on heterogeneous multicore processors. In Proceedings of the 23rd IEEE Sym-
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posium on High Performance Computer Architecture (HPCA), pages 397–408,
2017

An extended version of this work was published in:

A. Naithani, S. Eyerman, and L. Eeckhout. Optimizing soft error reliability
through scheduling on heterogeneous multicore processors. IEEE Transactions
on Computers, 67(6):830–846, 2018

1.3.3 Dispatch Halting

Modern out-of-order cores expose a large microarchitectural state while
executing an application. The severity of the problem is further aggravated for
memory-bound applications as a large microarchitectural state is maintained
inside an out-of-order core while waiting for data to return from memory. The
size of this microarchitectural state exposed to transient faults has increased
with every new processor generation.

To address the issue of high vulnerability of memory-intensive applications,
we propose dispatch halting, a microarchitectural technique to improve their
soft error reliability on out-of-order processors. We propose two variants, proac-
tive and reactive dispatch halting, which offer different trade-offs. Proactive
dispatch halting prevents instructions following a long-latency load from allo-
cating large back-end structures and generates memory-level parallelism from
the front-end itself. Reactive dispatch halting, on the other hand, marks the
back-end speculative if no instruction is committed for a certain number of
cycles. The speculative instructions generate memory accesses and a copy of
them is replayed later. Proactive and reactive dispatch halting improve mean
time to failure (MTTF) by 1.42× and 1.72× on average for the entire SPEC
CPU2006 suite, respectively, and by 1.77× and 2.23× for the memory-intensive
benchmarks, with minimal impact on performance. Proactive dispatch halting
incurs a modest chip area (1.8 KB) and small power overhead (2.7%), whereas
reactive dispatch halting incurs no additional chip area and a modest power
overhead (6.2%).

This work is currently under preparation for submission in:

A. Naithani and L. Eeckhout. Dispatch halting. In Proceedings of the
International Conference on Dependable Systems and Networks (DSN), 2020

1.3.4 Precise Runahead Execution

Traditional runahead execution [139, 141] improves processor performance
by accurately prefetching long-latency memory accesses. When a long-latency
load causes the instruction window to fill up and halt the pipeline, the processor
enters runahead mode and keeps speculatively executing code to trigger accu-
rate prefetches. Runahead buffer, a recent improvement [79], tracks the chain
of instructions that leads to the long-latency load, stores it in a buffer, and exe-
cutes only this chain during runahead execution, with the purpose of generating
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more prefetch requests during runahead execution. Runahead execution and
runahead buffer, while targeting performance, also improve reliability, since
the instructions are executed speculatively after a full-window stall. Therefore,
in this work, we conduct an experiment to quantify the impact of runahead
techniques on reliability.

We also observe that all prior runahead proposals have shortcomings that
limit performance and energy efficiency because they release processor state
when entering runahead mode and then need to re-fill the pipeline to restart
normal operation. This significantly constrains the performance benefits and
increases the energy overhead of runahead execution. In addition, runahead
buffer limits prefetch coverage by tracking only a single chain of instructions
that leads to the same long-latency load. We propose precise runahead ex-
ecution (PRE) to eliminate the aforementioned shortcomings of prior runa-
head techniques. For memory-intensive workloads, PRE achieves an additional
18.2% performance improvement over the recent runahead proposals while at
the same time reducing energy consumption by 6.8%. Relative to an out-of-
order core, PRE, runahead execution, and runahead buffer improve reliability
by 28%, 44%, and 49%, respectively.

This work was published in:

A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout. Precise runahead execu-
tion. IEEE Computer Architecture Letters, 18(1):71–74, 2019

An extended version of this work is accepted for publication in:

A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout. Precise runahead ex-
ecution. In Proceedings of the 26th IEEE Symposium on High Performance
Computer Architecture (HPCA), 2020

1.4 Dissertation Overview

This dissertation is organized in six chapters.

Chapter 2 provides necessary background on soft errors and existing meth-
ods for assessing soft error vulnerability. It also briefly covers processor mi-
croarchitecture to ease the understanding of Chapters 4 and 5.

In Chapter 3, we demonstrate the need for reliability-aware scheduling,
propose our novel metric to quantify soft error vulnerability of multiprogram
workloads running on heterogeneous multicores, and we discuss the working
of our scheduler in detail. We further evaluate the robustness of our sched-
uler across different core count, frequency settings, and heterogeneity. The
chapter also evaluates the impact of reliability-aware scheduling on power, and
compares performance-, power-, and reliability-optimized schedulers. In ad-
dition, we extend the reliability-aware scheduler to adapt under performance
constraints and also evaluate the importance of reliability-aware scheduling
when the vulnerability of on-chip caches is also accounted for.
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Chapter 4 targets the vulnerability of memory-intensive single-threaded
workloads on out-of-order cores. The chapter shows that a large microarchi-
tectural state is exposed to soft errors while waiting for a memory access to
return. The chapter proposes a novel technique, called dispatch halting, to
address the issue of high vulnerability during memory accesses. The chapter
further explains the microarchitecture for dispatch halting in great detail, and
evaluates the impact of dispatch halting on performance and power.

Chapter 5 first lists the shortcomings of prior runahead proposals, and then
builds the case for precise runahead execution, a new runahead technique to
improve single-thread performance. The chapter explains how precise runahead
is able to efficiently recycle resources without flushing the ROB, and presents
the performance and energy benefits of this new runahead technique. It further
evaluates the reliability improvement achieved by different variants of runahead
execution.

Finally, in Chapter 6 we conclude the dissertation and discuss some possible
future work.





Chapter 2

Background

In this chapter, we present the background on soft error reliability and
processor architecture. Section 2.2 explains the terminology from the fault-
tolerance domain — it introduces soft errors and explains the types of errors
that computing systems encounter today. Section 2.3 provides an estimation
methodology, known as architecturally correct execution (ACE) analysis, used
for assessing soft error reliability in this dissertation. Section 2.4 explains an-
other equally popular soft error estimation technique known as fault injection.
In addition to the characteristics of an application, soft error reliability is also
determined by the processor running the application. Therefore, Section 2.5
briefly explains the working of the in-order and out-of-order processors. Finally,
Section 2.6 summarizes the chapter.

2.1 The Soft Error Problem

This dissertation focuses on radiation-induced soft errors or transient errors.
While soft errors due to other sources such as process variability and system
noise can be handled before a chip is shipped [134], full protection against
radiation-induced soft errors requires incorporating proper error detection and
correction mechanisms into the chip. Radiation-induced soft errors are caused
by two types of radiation: first, from alpha particles emanating from packaging
material of a chip [126], and second, from the atmospheric neutrons [18, 19,
129, 223]. As described in Section 1.2, the energy particles due to radiation
can flip the state of a transistor or SRAM cell, leading to a soft error. The
incoming neutron flux every hour at the sea level is about 13 neutrons for every
cm2 of area [93], and the neutron flux increases with the altitude. Therefore,
the probability of encountering a soft error increases with altitude. Soft errors
due to alpha particle contamination were first reported by Intel in 1978 [126],
and soft errors due to atmospheric radiations were first reported by IBM in
1984 [222]. The server systems of the companies like Sun Microsystems and
Hewlett-Packard have also encountered crashes due to soft errors [134].

13
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Fault Error Failure

Figure 2.1: A fault is the underlying cause of an error which may possibly
translate into a failure.

2.2 Terminology

2.2.1 Faults, Errors, and Failures

A fault is a defect in software or hardware. For example, a non-functioning
transistor represents a hardware fault. Hardware faults are caused by imper-
fections in the manufacturing process of a silicon chip or due to interaction of
the chip with its surroundings. Change in temperature or pressure can lead to
a hardware fault. Similarly, energy particle strikes due to radiation can also
lead to a hardware fault. Programming bugs that lead to unexpected behavior
— for example, a division by zero or a data race — are software faults.

An error is the manifestation of a fault. For example, a bit changing from
0 to 1, or vice-versa, due to a malfunctioning transistor, is an error. An error
guarantees the presence of a fault. However, a fault does not always lead to an
error. For example, a fault in a flip-flop input value, when it is not latched to
the output, does not lead to an error. Such a fault is called a masked fault.

A failure is defined as the inability of a system to meet certain requirements;
these requirements can be in the form of correctness, timing deadline or some
form of other guarantees. A failure is a possible outcome of an error. An error
that is masked or corrected does not lead to a failure.

Depending on the nature of a fault, it belongs to one of the following three
categories:

1. Permanent faults: A fault in a device is permanent if it requires to be
fixed at the hardware level or it cannot be fixed. Such faults reappear
upon every use of the device. Permanent faults are typically a result
of the wearout of a device and mark the deteriorating lifetime of the
device. Electromigration is an example of a permanent fault [69]. The
error caused by a permanent fault is termed as a permanent error or hard
error.

2. Intermittent faults: Intermittent faults only occur under certain con-
ditions, for example, under elevated temperature. A stuck-at bit for an
interval of time is an example of an intermittent fault. Voltage droops
also lead to intermittent faults [69]. These faults indicate that the life of
a device is nearing toward a permanent fault.

3. Transient faults: Transient faults are random and do not indicate a
device lifetime problem. These faults can not be reproduced over multiple
usages of the device. Transient faults are caused by energy particle strikes
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Figure 2.2: A program executes through several layers of abstractions. A fault
at a lower layer can be masked from the higher layer of the abstraction stack.

on a gate or a transistor, which can potentially change the state of the
electronic device.

Three widely popular metrics in the fault-tolerance community are intrinsic
fault rate, FIT rate, and MTTF. FIT rate and MTTF can be used to express
either the number of failures or the number of errors [134, 137, 214]. We review
them in the context of soft errors below:

Intrinsic Fault Rate (IFR). A raw error occurs when a particle strike causes
the state of a one-bit cell to flip or a logic element to produce incorrect out-
put [120]; a raw error is analogous to a fault. IFR or raw error rate of a one-bit
cell is defined as the probability for a raw error per second, or, in other words,
the average number of raw errors per unit of time, for example, 10−6 per day.
IFR depends on the circuit technology and the environment.

Failure In Time (FIT) rate. FIT rate is defined as the total number of
errors in a billion device hours.

Mean Time To Failure (MTTF). MTTF represents the time between two
errors, and it is inversely related to the FIT rate,

MTTF =
1

FIT
(2.1)

However, FIT rate, being additive, is easier to comprehend.

2.2.2 Fault Masking and Fault Scope

A program executes through layers of abstraction from the user-level to the
circuits. Only the input and output values communicated at the interface of
two layers must be correct for correct execution of a program. Therefore, unless
it impacts the output generated at a particular layer, a fault or an error at the
layer of abstraction may not necessarily be visible at a higher layer. Sridharan
et al. [191] propose the notion of the system vulnerability stack, which shows
that a fault must be visible at each layer of the stack to lead to an error at the
user level. For example, if both input logic values of a logical OR gate are 1,
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Figure 2.3: Different possible outcomes of a fault on a bit (Reproduced
from [214].)

the outcome of the OR gate does not change if one of the input values changes
from 1 to 0 due to a fault. This fault is visible at the circuit level but does
not propagate to the higher layers in the stack. Such a fault is masked at the
circuit level itself. A fault on an unallocated issue queue entry is also masked.
Each layer can also implement its own error detection and correction capability.
For example, Error Correcting Codes (ECC) employed at the lower levels of
memory hierarchy (L2, L3 and DRAM) can detect and correct memory errors.
That is, the error is corrected even before a load instruction moves the data
from the L1 D-cache to a processor physical register, or even before the data
reaches the L1 D-cache. Therefore, the error is visible within the boundary of
the ECC but it is masked for the core microarchitecture. Additionally, a layer
can raise an alarm when it detects an error, and notify the user or system soft-
ware to correct the error, or even abort the program execution. For example,
if the memory address generated by the Memory Management Unit (MMU)
encounters a bit flip which changes the address to fall outside of the permitted
address space of a process, the protection mechanism implemented by the OS
will prevent the process from accessing the (corrupted) address. The OS will
notify the user by generating an illegal exception or by simply terminating the
process. Several prior works have studied the impact of masking at the various
levels of the abstraction stack [50, 104, 137, 212, 214].

Figure 2.3, originally created by Weaver et al. [214], provides an alternative
representation of how a fault in a bit can eventually lead to an error. The ad-
verse eventual outcome of a fault can be either a silent data corruption (SDC)
or a detected unrecoverable error (DUE). SDCs, even at an extremely small
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degree, can lead to catastrophic outcomes. Several prior works have researched
into minimizing the level of SDCs in modern computing systems. This disser-
tation also minimizes the number of bits exposed to soft errors by a program,
which directly translates into a reduced number of SDCs the program encoun-
ters. DUEs are less severe, as they either alert the user that the outcome is
erroneous or simply abort the execution. Therefore, DUEs caused by soft errors
can be corrected by re-executing the application.

2.3 ACE Analysis

Architecturally Correct Execution (ACE) analysis was proposed by Mukher-
jee et el. [137] to assess soft error vulnerability of a program. ACE analysis
builds on the key idea that not all faults in a hardware structure — for exam-
ple, a processor — affect the final program outcome. Under the same circuit
technology and environment conditions, all structures of a pipeline are equally
vulnerable to soft errors, as depicted by the raw error rate or intrinsic fault-rate
of the structure. However, the impact of a fault on the hardware structure may
not necessarily corrupt the program output. Therefore, providing equal pro-
tection against soft errors to all structures is not required. For example, a fault
in the branch predictor can never lead to incorrect updates to the architectural
state of a program. A branch predictor is only effective in improving the per-
formance of an application. Therefore, no protection is required for the branch
predictor. In contrast, the Program Counter (PC) must be protected, as the
address of the next instruction to be executed is stored in the PC. Therefore, a
fault in the PC will always lead to incorrect program execution. ACE analysis
helps guide designers add varying degrees of protection to different pipeline
structures depending on their vulnerability to soft errors.

ACE bit. A processor bit is defined as an ACE bit if the bit will cause an error
during program execution when flipped, affecting user-visible state (program
crash or wrong output). A bit that is not ACE is an un-ACE bit. All ACE
bits must be correct for correct execution of a program on a processor. For
example, all bits of the PC are ACE, and all bits of the branch predictor are
un-ACE. A processor bit can be ACE in one cycle and un-ACE in another cycle.
For example, the bits written by an instruction in a physical register are ACE
before the instruction commits. However, once the (physical) register value has
been propagated to the architectural state of the program upon commit, the
physical register bits are no longer required, and are thus un-ACE. Overall, in
a given cycle, a processor bit is either ACE or un-ACE.

ACE cycles. The ACE cycles for a bit are the total number of cycles the bit
is ACE.

ACE Bit Count (ABC). ABC for a program running on a processor is the
sum of the ACE cycles for all processor bits for the execution of the program.
For a program running on a processor with N bits, ABC is expressed as:
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ABC =

N∑
i=1

ACEi (2.2)

where ACEi represents the ACE cycles for bit i.

Architectural Vulnerability Factor (AVF). AVF [137] is defined as the
fraction of ACE bits to the total number of bits in a structure, core or the
whole processor. For a processor bit, AVF is defined as the fraction of total
cycles the bit was ACE. For example, if a program executes for 1 Billion cycles
and a bit was ACE for only 500 Million cycles, the AVF of the bit equals 0.5
or 50%. AVF of the branch predictor is 0% and the AVF of the PC is 100%.
For a complete execution, AVF of a program can be expressed as:

AVF =
ABC

N × T
(2.3)

with T the execution time of the program and N the total number of bits
in the processor. Obviously, AVF is application-dependent, as some applica-
tions occupy more or fewer entries in the core structures, and/or have more or
fewer wrong-path instructions. Alternatively, AVF represents the fraction of
processor bits exposed by correct-path instruction of a program. A 35% AVF
of a program implies that on average, 35% of the pipeline is occupied with
correct-path state for the entire execution of a program.

Soft Error Rate (SER). SER is defined as the total number of errors on
ACE bits encountered by a program per unit of time. SER is computed as
follows:

SER =
ABC

T
× IFR. (2.4)

From Equation 2.4, we conclude that for the same execution time, circuit tech-
nology and environment, SER of a program is directly proportional to ABC.
Therefore, a 10% decrease in ABC leads to a 10% reduction in the number of
soft errors, assuming that execution time does not change.

ACE analysis is performed using a model of a hardware structure, for ex-
ample, a processor simulator, and the accuracy of estimated AVF depends on
the level of detail incorporated in the model [23]. The more details, the longer
it takes to estimate the AVF. Nevertheless, ACE analysis is extremely fast and
the guidelines from the early reliability estimates can improve the robustness of
the hardware structure. Another benefit of ACE analysis is that the vulnerabil-
ity estimation requires only a few runs of the model. We augment Sniper [32], a
state-of-the-art processor simulator with ACE bit counters for evaluating novel
techniques proposed in this dissertation for improving reliability. Section 3.4
explains the counter mechanism in detail.
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2.4 Fault Injection

The architectural vulnerability factor can also be calculated by performing
fault injection campaigns. Fault injection involves altering a (hardware) bit
and comparing the outcome of a program against a fault-free outcome. If
there is a mismatch between the two outcomes, the correctness of the hardware
bit is a must for correct program execution; otherwise, the fault is masked.
The architectural vulnerability factor of a program running on the hardware
structure is the fraction of the total number of mismatched outcomes to the
total number of fault injections.

Fault injection can be performed either at the hardware level or at the
software level [128], which we discuss in more detail now.

2.4.1 Hardware-Level Fault Injection

Hardware-level fault injection is performed by using an external device to
inject faults in the target hardware, for example, a processor or memory. The
injection can be performed at the pin level [10, 11, 181]; another approach is to
expose the target processor to radiation [64, 73, 156, 157] or electromagnetic
interference [100]. Exposure to radiation, through for example a neutron beam,
is helpful in understanding the vulnerability of an existing processor chip. Ad-
ditionally, the entire vulnerability stack shown in Figure 2.2 is exposed to the
radiation. Therefore, hardware-level fault injection provides the most accurate
reliability estimation. However, the chip must be designed before performing
the injection, and this is already too late in the design cycle of a processor chip
to impact its design. However, the feedback from the hardware-level fault in-
jection may be extremely helpful for improving the reliability of future designs.
The cost associated with the experimental setup to inject faults is typically very
high and the hardware-level fault injection can also damage the chip under test.

2.4.2 Software-Level Fault Injection

Software-level fault injection is widely used to assess the vulnerability of
programs running on a hardware. The program under test can be a user-
level application or system software such as the OS. As the name suggests, the
faults are injected in the software itself, either at compile-time or at runtime.
At compile time, the code can be modified to inject faults at specific locations;
the fault gets triggered when the particular location is executed. At runtime,
a fault injector can be invoked when the program under test meets certain
conditions — for example, when accessing a particular memory location or
writing to a particular architectural register. Fault injection campaigns can be
launched at the architecture level, microarchitecture level, or Register-Transfer
Level (RTL) model (or simulator) of a processor. The feedback from software-
level fault injection can be included in improving the robustness of the chip, and
therefore, unlike hardware-level fault injection, software-level fault injection is
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helpful in the early reliability assessment of a hardware structure. Several
tools have been proposed to estimate the robustness using software-level fault
injection [34, 36, 61, 78, 99, 117, 176, 204, 218].

A massive injection campaign needs to be performed before the vulnera-
bility of a program can be quantified with a certain degree of statistical con-
fidence [116]. Therefore, software-based fault injection is a slow process, and
the time to perform fault injection increases with increasing details of the un-
derlying model [37]. For example, injecting faults in an RTL-level simulator
requires an order of magnitude more time than an architecture-level simula-
tor [43]. Several researchers have proposed techniques to speed up the fault
injection campaign without significantly degrading its accuracy [98, 167]. Con-
trary to the hardware-level fault injection that can inject faults even at the
level of silicon, the lowest accessible hardware structures by software-level fault
injection are architectural registers, memory addresses, and data values. The
process of reliability assessment using software-level fault injection is inexpen-
sive, repeatable, and it does not damage the device under test.

2.5 General-Purpose Processor Architecture

In this section, we provide a brief overview of the functionality of super-
scalar in-order and out-of-order (OoO) processors. Modern processor pipelines
can have up to 20 stages, however, the functionality of the pipeline can be
broadly divided into five stages: fetch, decode, execute, memory access and
commit. A scalar pipeline executes at most one instruction every cycle; a su-
perscalar pipeline can execute more than one instruction every cycle. An n-way
superscalar pipeline executes up to n instructions every cycle. The fetch and
decode stages make up the processor front-end, while the other stages consti-
tute the back-end. Commit is the last stage of the pipeline that releases core
microarchitectural resources, and updates the architectural state of a program.
The instructions are always fetched and committed in program order. Some
pipeline stages can handle slightly more instructions than others. For example,
front-end can be wider than the back-end, to ensure an uninterrupted supply
of instructions to the back-end. Similarly, depending on the readiness of the
available instructions, the issue stage can issue more than n instructions every
cycle in an n-way superscalar processor. Both in-order and OoO processors can
be superscalar.

2.5.1 Processor Front-End

The functionality of the fetch and decode stages of the pipeline is similar
for both in-order and OoO cores. However, the fetch and decode stages of
the in-order core are typically less complex than the OoO core. In addition,
an out-of-order core also performs register renaming in the processor front-end
before sending instructions to the back-end for execution.
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instruction-id instruction data dependence

I1 add r1 ← r2, r3

I2 mul r2 ← r3, r4 WAR I1(r2)

I3 ld r1 ← mem[x] WAW I1(r1)

I4 add r2 ← r1, r3 RAW I3(r1), WAW I2(r2)

I5 ld r5 ← mem[y]

I6 sub r6 ← r4, r5 RAW I5(r5)

I7 ld r6 ← mem[z] WAW I6(r6)

Figure 2.4: An example code sequence with RAW, WAR and WAW data
dependences. RAW I(r) means current instruction has RAW hazard with
instruction I through architectural register r.

The fetch stage of the processor pipeline retrieves program instructions from
the L1 instruction cache (L1 I-cache); modern processors typically fetch more
than one instruction every cycle from the I-Cache [62]. Branch instructions can
change the control flow based on the outcome of a branch, which is not known
until the branch is executed. Therefore, branch prediction is also performed
in the fetch stage of the pipeline and the next address to fetch from is the
(predicted) branch target address in the program address space.

The decode stage of the pipeline is responsible for understanding the mean-
ing of the instructions embedded in the incoming stream of bytes from the
fetch unit. This stage of the pipeline also breaks instructions into micro-ops1.
Depending on the types of instructions supported by the Instruction-Set Archi-
tecture (ISA) implemented by the processor, there can be multiple decoders of
different complexity designed in the decode stage. Furthermore, both the fetch
and decode stages can further be divided into multiple pipeline stages; for ex-
ample, the IBM POWER8 processor has six fetch and five decode stages [183].
There can be several optimizations such as micro-op cache, loop-stream detec-
tion, and a micro-op queue implemented in the processor front-end to improve
the flow of micro-ops to the processor back-end [201].

2.5.2 Pipeline Hazards

A control dependence happens when the flow of execution (or PC) changes
due to execution of certain instructions like branches or exceptions. A data
dependence occurs when there is a data dependency between two instructions,
either through (architectural) registers or through memory. There are three
types of data dependences: read after write (RAW), write after read (WAR)
and write after write (WAW). Figure 2.4 shows an example of these data depen-
dences. RAW is the only true dependence as WAR and WAW can be eliminated
through register renaming, as discussed in Section 2.5.4. A pipeline hazard is

1We use the terms instruction and micro-op interchangeably in this work and the meaning
should be clear from the context.
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a situation that prevents the next instruction in the instruction stream from
executing during its designated clock cycle [84]. Pipeline hazards cause perfor-
mance bottlenecks. A structural hazard occurs when the appropriate hardware
resource, for example an execution unit, to process an instruction is not avail-
able in a given cycle.

2.5.3 In-order Cores

In an in-order core, the instructions are issued to the execution units in
program order. A scoreboard keeps track of the data dependences among in-
structions, and the availability of resources to execute the instructions. An
instruction is issued only when all its operands are ready and the required
functional unit is available. The dependent instruction must wait in case of a
RAW hazard; for example, in Figure 2.4, instruction I4 cannot be issued until
I3 finishes execution and updates register r1. Since instructions are issued in
order, there is no WAR hazard because the previous instruction finishes read-
ing the register value before the next instruction writes to it. As an example,
I2 writes to r2 only after I1 has read register r2. In case of a WAW hazard,
as with instructions I2 and I4 on register r2, I4 cannot write to r2 until I2
has finished writing to r2. Register r2 is busy until instruction I2 has written
to it.

Depending on their types, instructions can take varying number of cycles
to finish execution. Therefore, the number of cycles an instruction waits is
decided by the latency of the instruction it depends on. For example, if the
load instruction (I3) takes 200 cycles to read data from memory, I4 cannot
be issued for 200 cycles after I3 was issued. Therefore, although the following
instructions I5 and I6 do not depend on either I3 or I4, I4 blocks the head of
the scoreboard and no instruction can be issued. The in-order issue policy is
the main performance bottleneck of in-order cores.

2.5.4 Out-of-Order Cores

Modern OoO microarchitecture such as Intel’s Skylake and IBM’s POWER8
are complex with up to twenty pipeline stages [54, 183]. There are five key
operations performed within an OoO core.

1. Register renaming: Register renaming eliminates false register depen-
dences — that is, WAR and WAW register dependences — among in-
structions by mapping each architectural register to a unique physical
register. Every destination architectural register of an instruction is allo-
cated a new physical register; the source architectural registers can simply
be mapped to the already renamed physical register. Figure 2.5 shows
the instruction sequence from Figure 2.4 after renaming. The mapping
from architectural registers to physical registers is maintained in a ta-
ble commonly known as a Register Alias Table (RAT). The number of
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instruction-id instruction data dependence

I1 add P1 ← P2, P3

I2 mul P5 ← P3, P4

I3 ld P6 ← mem[x]

I4 add P7 ← P6, P3 RAW I3(P6)

I5 ld P8 ← mem[y]

I6 sub P9 ← P4, P8 RAW I5(P8)

I7 ld P10 ← mem[z]

Figure 2.5: True data hazards (RAW) after renaming the code sequence
shown in Figure 2.4. Pi refers to the physical register i.

physical registers designed in an OoO core is significantly larger than the
number of architectural registers. A RAW dependence is the only data
dependence after register renaming. Therefore, although the instructions
are fetched and committed in program order, the execution within the
OoO core — the selection of instructions to the functional units for ex-
ecution — is performed in a data-flow manner and thus possibly out of
program order.

2. In-order dispatch: The dispatch stage of an OoO pipeline receives re-
named instructions in program order, and allocates them back-end re-
sources in the same order. Four hardware structures forming the back-
bone of an OoO core are the reorder buffer (ROB), issue queue, load
queue, and store queue. All instructions allocate a new entry in the ROB
and issue queue. A load instruction also allocates an entry in the load
queue; similarly, a store instruction allocates an entry in the store queue.
Allocating load and store queue entries in program order is critical for
dealing with memory disambiguation, as we will discuss later.

3. Out-of-order issue: The OoO issue queue resolves the (in-order) issue
bottleneck of the in-order core. Any instruction, irrespective of its order
among other instructions in the program, can execute when its source
operands are ready and the appropriate functional unit is available, lead-
ing to out-of-order execution. Therefore, the younger ready instructions
can execute before older non-ready instructions; for example, I5 and I7

(see Figure 2.5) can now execute before I4. The execution of instructions
potentially overlaps due to out-of-order issue, increasing the degree of
instruction-level parallelism (ILP). Increased ILP also increases memory-
level parallelism (MLP), which is defined as the number of outstanding
requests to memory when at least one request is outstanding [45].

4. Handling branch mispredictions and exceptions: A younger in-
struction can execute before an older instruction due to out-of-order exe-
cution. In case the older instruction is a branch that is not resolved yet,
the instructions younger to the branch instruction are termed as specu-
lative. If the branch turns out to be mispredicted upon resolution (or
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execution), all the speculative instructions need to be flushed from the
pipeline. Similarly, instructions after a load instruction that causes a
page-fault must be flushed from the pipeline. Overall, the architectural
state of an executing program, which consists of the architectural register
file (ARF) and memory, must not reflect updates from the speculative
instructions; therefore, an instruction after a mispredicted branch or ex-
ception must not propagate its update to the ARF and memory. All
branch mispredictions, exceptions and interrupts must be handled pre-
cisely — that is, when they commit, all instructions prior to them must
update the architectural state of the program and no instruction after
them updates the architectural state [185].

This sequential model of program execution where an instruction only
completes after all prior instructions have completed, is realized with
the help of the reorder buffer (ROB) in an OoO processor. The ROB
maintains entries of dispatched instructions in program order, and the
instructions are committed in the same order. An instruction updates
the architectural state of the program only when it commits, and an
instruction commits only when it is the oldest instruction in the ROB.
Therefore, a younger instruction can never update the architectural state
before an older instruction. In processors such as Intel Pentium Pro,
when a branch instruction reaching the head of the ROB turns out to be
mispredicted, all instructions after the mispredicted branch are flushed
from the pipeline and the front-end is redirected to fetch from the branch
target address [70]. Waiting for a (mispredicted) branch to reach the head
of the ROB significantly degrades application performance. Therefore,
modern processors instead maintain a log of the rename table updates
as the instructions are renamed in program order. When a branch is
mispredicted, the log is traversed backwards to restore the rename table
to state before the branch instruction. Processors such as MIPS R10000
or Alpha 21264 maintain periodic checkpoints to reduce the traversal time
through the log in the event of a branch misprediction [70].

To ensure that the instruction causing an exception is not speculative,
exceptions are typically handled at the commit stage of the pipeline. For
example, when a load instruction causes an exception, such as a page-
fault, the instructions following the load are flushed from the pipeline
and the processor begins executing the corresponding fault handler (for
example, a page fault handler or TLB miss handler.)

5. Memory disambiguation: The load queue, store queue and store
buffer are the three microarchitectural structures designed to efficiently
handle memory operations in an out-of-order processor. The load queue
and store queue maintain entries for load and store instructions in pro-
gram order. The store queue also holds the data values for the executed
store instructions. When a store instruction commits, its associated data
value from the store queue is moved to the store buffer. The data in the
store buffer is part of the architectural state of the program, and the data
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is written to the memory hierarchy when a store instruction eventually
retires.

In a manner similar to dependence through (architectural) registers, load
and store instructions can also have RAW, WAR and WAW dependences
through a common memory address. WAR and WAW dependences are
automatically resolved because the load and store instructions are com-
mitted in program order. The processor must handle the RAW depen-
dence between a load instruction and an earlier store instruction to en-
sure that the load instruction reads most up-to-date data value. Memory
disambiguation is knowing with certainty whether the load and store
instructions will access the same memory location [175]. The memory
location can only be known when the address of a load or store instruc-
tion is calculated by the address generation unit; otherwise, the load or
store is termed as ambiguous. The fundamental problem in determining
the RAW dependence between a load instruction and an earlier store in-
struction is that the memory addresses used by load or store instructions
are not known until their execution.

A naive solution to handle RAW dependences between a load and (prior)
store instructions would be to execute all load and store instructions in
program order. Therefore, execute a load instruction if there are no prior
store instructions writing to the same memory address as the load in-
struction. The load instruction does not execute if there is a prior store
instruction with an unresolved address. This requires checking the status
of all prior store instructions in the store queue. In case of an address
match, the data value has to be transferred from the store queue/buffer
to the load instruction. When there is no address match, the load instruc-
tion can safely access the data value from the L1 D-cache. The in-order
execution of load and store instructions ensures that a load instruction
always accesses the most up-to-date data value.

However, since load instructions are typically on the critical path of a
program execution, delaying the execution of a load instruction until all
prior store addresses are known can adversely impact the performance of
an application running on an out-of-order processor. More importantly,
the majority of load instructions in a program do not depend on prior
store instructions. Therefore, modern processors allow load instructions
to execute out-of-order as soon as their input operands are available. A
load instruction accesses the store queue, store buffer and L1 D-cache
in parallel. If there is a hit in the store queue or store buffer, the data
is forwarded from the youngest store instruction to the load instruction;
otherwise, the data is accessed from the L1 D-cache [6]. The address and
data values associated with an executed load instruction are buffered in
the load queue. When a store instruction executes, it checks the load
queue for a potential address conflict with a younger load instruction. In
case of an address match between the store instruction and a younger
load instruction, the load instruction needs to update its data value.
Therefore, the load instruction, and its dependent instructions, are re-
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executed. Memory dependence prediction is a well-known technique to
limit the cost of such a re-execution in out-of-order processors.

2.6 Summary

Radiation-induced soft errors are caused either by neutron particles from
cosmic rays or alpha particles present in the packaging material of a chip. These
energy particles cause faults in the hardware which can be masked for various
reasons. ACE analysis and fault injection are two well-established methods
to evaluate the architectural vulnerability factor in modern processors. Both
techniques offer different trade-offs in terms of accuracy and speed.

In-order cores are less complex and frequently stall on memory accesses
while out-of-order cores employ sophisticated techniques such as register re-
naming and memory disambiguation to extract high degrees of instruction-
level parallelism and memory-level parallelism. The concepts presented in this
chapter will be helpful in understanding the detailed microarchitecture work
conducted in the following chapters.



Chapter 3

Reliability-Aware
Scheduling

Heterogeneous chip-multiprocessors (HCMP) [112, 113] were recently in-
troduced to improve performance in an energy-efficient way. The presence of
multiple core types, e.g., big high-performance cores and small energy-efficient
cores, allows flexibility in the power-performance balance of a processor: if high
performance is needed, an application can use a big core, but if energy efficiency
is the main objective, it can run on a small core. An HCMP scheduler should
also take into account the characteristics of the applications. Some applica-
tions show almost no performance improvement on the big core compared to
the in-order core, whereas others benefit from higher performance gains. By in-
telligently selecting the applications that run on the big core, performance can
be optimized [112, 207], potentially within a given power limit [1, 2, 138, 221].

In this chapter, we perform a detailed analysis of the performance and
soft error reliability of the benchmarks from the SPEC CPU2006 suite on an
HCMP. We show that the vulnerability on a core cannot be directly correlated
to any application characteristic, and we observe that there is a clear oppor-
tunity for improving the overall system reliability by migrating applications
between different core types without significant impact on performance. We
begin in Section 3.1 by estimating reliability and performance on big and small
cores, and show that there is significant potential for reliability-aware schedul-
ing. We note the lack of a reliability metric to assess the vulnerability of a
multiprogram workload on a multicore processor. Therefore, in Section 3.2, we
propose the system soft error rate (SSER) metric for quantifying the soft error
rate of multiprogram workloads. In Section 3.3, we then describe the design
and implementation of our reliability-aware scheduler. The hardware overhead
of the proposed scheduler is estimated in Section 3.4. A detailed evaluation
of the proposed reliability-aware scheduler on reliability and performance is
performed in Section 3.6.

27
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We increase the robustness of reliability-aware scheduling by extending it
in several directions. In Section 3.7, we show the impact of reliability-aware
scheduling on power. We also design and implement a power-optimized sched-
uler and compare reliability-, performance-, and power-optimized scheduling
policies in an HCMP. Section 3.8 analyzes the improvement in reliability un-
der performance constraints. For certain systems, performance degradation
below a predetermined threshold is not permitted, and therefore, optimiza-
tion for reliability must be performed within the performance limit. We re-
place the multiprogram workloads by multithreaded workloads in Section 3.9.
Multithreaded workloads have entirely different characteristics when compared
to multiprogram workloads, as the threads from a multithreaded workload
need synchronization among them. In Section 3.10, we extend our analysis of
reliability-aware scheduling to include ACE bits exposed by an application in
on-chip L1 caches in addition to the core.

3.1 Reliability in an HCMP

In this section, we first analyze the difference in vulnerability to soft errors
across core types, and then show the potential for reliability-aware scheduling
using an offline oracle approach. As explained in Section 2.3, all ACE bits
must not encounter any soft error during a program execution, and AVF is the
fraction of ACE bits to the total bits exposed by a program on a processor. We
assume each bit in the processor pipeline holding state of a correct-path and
non-NOP instruction to be ACE; i.e., all bits in the issue queue, load/store
queue, reorder buffer, physical register file, and functional unit holding state
of a correct-path, non-NOP instruction are considered ACE. Structures that
improve performance but do not affect functional correctness (e.g, a branch
predictor) do not contain any ACE bits.

3.1.1 Reliability versus Core Type

It is commonly known that different core types in a heterogeneous multi-
core processor exhibit different performance and power characteristics. How-
ever, different core types also exhibit differences in reliability, leading to an
opportunity for improving reliability through scheduling.

There are basically three contributors to the reliability of an application
running on a core: (1) processor design, (2) application characteristics, and
(3) application performance on the core. We elaborate upon these points below.

Processor Design. The size of the core structures that hold architecture
state and that are required to guarantee functional correctness affects reliabil-
ity. In an in-order processor, these include register file, functional units, and
scoreboard. In an out-of-order processor, the microarchitectural structures are
register file, functional units, issue queue, load queue, store queue, and the
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reorder buffer. The larger these structures are, the higher the probability for
an error in those structures.

Application Characteristics. The application characteristics also determine
its reliability — this is decided by the fraction of the architecturally relevant
structures that an application occupies, i.e., AVF. Some applications can oc-
cupy a small fraction of the core structures while others may keep the pipeline
mostly occupied with correct-path state. Applications occupying only a small
fraction of these structures can have a lot of non-architecturally relevant in-
structions (NOPs, wrong-path instructions). The smaller the occupied fraction
is, the smaller is the error probability.

Application Performance. The performance of an application on a par-
ticular core type decides the duration for which the application state will be
exposed to soft errors. If an application executes faster, it will finish sooner,
and therefore it will be less vulnerable to errors. On the contrary, if the appli-
cation takes longer to finish, the exposure to soft-error increases, which leads
to a higher chance for an error.

Now consider a big out-of-order core and a small in-order core in an HCMP.
Obviously, the big core has larger structures than the small core. As a result,
a big core is likely to expose more vulnerable state than an in-order core.
However, the degree of vulnerability also depends on structure occupancy which
is a function of the application and its interaction with the underlying hardware.

3.1.2 Application Sensitivity

Applications exhibit varying degrees of sensitivity to soft error vulnerabil-
ity. AVF is an insightful metric to understand an application’s vulnerability to
soft errors. Figure 3.1 shows AVF for the SPEC CPU2006 benchmarks on a big
out-of-order core as well as a small in-order cores. (See Section 3.5 for details
regarding our experimental setup.) The benchmarks are sorted by their AVF
on the big core: gobmk has the lowest AVF at 8% while zeusmp has the highest
AVF of 41%. AVF accounts for all the ACE bits in the processor during the
entire execution. In particular, if an ACE instruction occupies 64 bits in the
reorder buffer (ROB) for 16 cycles, this amounts to 1024 ACE bits. This way
of measuring incorporates structure size, occupancy and execution time. As
expected, AVF is higher for the big out-of-order core compared to the small
in-order core; this is because a big core holds more architecture state. Microar-
chitectural structures of the small in-order core do not hold ACE bits during
execution for a long duration. For example, the physical register file consisting
of 16 integer and 16 floating-point registers accounts for more than half of the
total microarchitectural state of the small core (see Table 3.3). However, the
physical register values are ACE only between execute and commit stages of
the pipeline. Instructions occupy issue queue for a significantly longer duration
than the register file due to the in order issue policy of the small core. Note
however that in spite of the fact that AVF is higher on the small core than the
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Figure 3.1: AVF for the SPEC CPU2006 benchmarks on a big out-of-order
and a small in-order cores. The benchmarks are sorted by their AVF on the
big core.
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Figure 3.2: Normalized CPI stacks for the SPEC CPU2006 benchmarks on a
big out-of-order core.

big core for the left-most benchmark, gobmk, it is still less vulnerable to soft
errors on the small core because of the smaller structure size, i.e., N is smaller.

The applications appearing on the right-hand side of the graph are most sen-
sitive to reliability-aware scheduling, i.e., when scheduled on the big core, AVF
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(and thus SER) increases significantly compared to running on the small core.
Applications appearing on the left-hand size are less sensitive, i.e., the increase
in SER on the big core is not as high, and thus if given the choice, schedul-
ing these applications on a big core rather than a small core will not increase
overall system soft error rate as much. Figure 3.1 classifies the benchmarks
into three categories based on their big-core AVF: high, medium and low. We
will use this classification for analyzing the performance of our reliability-aware
scheduler across workload types in the evaluation section.

It is interesting to relate the AVF graph to the normalized CPI (cycles per
instruction) stacks shown in Figure 3.2. A CPI stack quantifies the fraction
of cycles spent doing useful work (i.e., the base component) plus a number
of adders or components to represent ‘lost’ cycles because of resource stalls,
branch mispredictions, instruction cache misses, last-level cache (LLC) misses
and main memory accesses. The ‘resource-stalls’ component in Figure 3.2 rep-
resents the sum of the time waiting on a full issue queue, and the time spent in
accessing L1-D and L2 caches. Note that the benchmarks are ordered the same
way as in Figure 3.1. The benchmarks on the left-hand side exhibit low AVF
primarily because of their relatively high front-end miss components. Front-end
miss events, such as branch mispredictions and instruction cache misses, cause
the pipeline to be drained and hence there is relatively little vulnerable state in
the processor. The benchmarks on the right-hand side on the other hand have
a high AVF because they exhibit high occupancy in various back-end struc-
tures of the pipeline for a variety of reasons. Some benchmarks (e.g., milc) are
memory-intensive: a load operation accessing main memory typically blocks
the head of the reorder buffer, which causes the ROB to fill up, and which
leads to significant ACE state while servicing the memory operation. Other
high-AVF benchmarks (e.g., zeusmp) are compute-intensive: high IPC and high
MLP is achieved by having high occupancy in various back-end queues. Yet
other benchmarks experience resource stalls in the back-end structures because
of L1 data cache misses, L2 cache misses, limited ILP (i.e., chains of dependent
instructions) which cause the ROB and issue queues to fill up with instructions.

Note that there are a number of memory-intensive benchmarks (e.g., mcf
and libquantum) that exhibit low AVF. This is because these benchmarks
suffer from branch mispredictions which lead to a large number of un-ACE
wrong-path instructions in the ROB underneath memory accesses. Although
mcf and libquantum are more memory-intensive than other memory-intensive
benchmarks like leslie3d and milc [79], their AVF is extremely low when
compared to these memory-intensive benchmarks. Similarly, calculix and
povray are the most compute-intensive benchmarks in the entire suite [79].
However, there is a large difference in their soft error reliability on a big out-
of-order core.

The take-away message from this analysis is that there exists no simple
workload characteristic (e.g., compute-intensive versus memory-intensive) to
determine how sensitive a workload is with respect to reliability. Instead, it
depends on how AVF-intensive an application is, which is a result of com-
plex interactions among various workload characteristics and the underlying
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Figure 3.3: Percentage STP loss and SER gain for an oracle
reliability-optimized scheduler relative to a performance-optimized scheduler
for four-program workloads on an HCMP with two big cores and two small
cores.

microarchitecture. This suggests that reliability-aware scheduling needs a dy-
namic mechanism to monitor an application’s reliability on either core type in
a heterogeneous multicore and adjust the schedule accordingly.

3.1.3 Oracle Reliability-Aware Scheduling

To quantify the potential of reliability-aware scheduling, we perform the
following experiment. We simulate each application on both core types, and
record performance and SER. We then consider all combinations of four applica-
tions on a heterogeneous multicore processor with two big and two small cores.
The total number of such four-program combinations equals

(
29
4

)
= 23, 751.

For a four-program workload, there are six possible ways to schedule it on two
big and two small cores: BBSS, SSBB, BSBS, SBSB, BSSB, SBBS; a B repre-
sents a big core and a S represents a small core. Of the six possible schedules,
we select the one with the highest performance (expressed in system through-
put (STP) [60]), and the one with the lowest total SER. (See the next section
for the metric we use to quantify SER for a multiprogram workload.) We as-
sume no interference in shared resources, and consider the performance and
SER numbers from the isolated experiments. This leads to an oracle offline
schedule. Figure 3.3 shows SER reduction and performance loss for the SER-
optimized schedule normalized to the performance-optimized schedule. Clearly,
the reduction in SER is much higher than the loss in performance, resulting in
an average 27.2% reduction in SER (and up to 62.8%) while degrading perfor-
mance by 7% on average. This result demonstrates the significant potential and
motivates our study on reliability-aware scheduling for heterogeneous multicore
processors.
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Time ABC SER
Big core 10 60 6
Small core 15 30 2

Table 3.1: Execution time, ABC and SER for a hypothetical benchmark on
big and small cores.

3.2 Reliability Metric for
Multiprogram Workloads

This section reviews existing reliability metrics and then proposes a novel
soft error reliability metric for multiprogram workloads.

3.2.1 Single-Program Workloads

For a single-program workload, reliability is commonly quantified using soft
error rate (SER), i.e., the number of errors per unit of time. The SER is defined
as:

SER =
ABC

T
× IFR, (3.1)

with ABC defined as the total ACE bit count over the entire execution of a
program. In other words, SER computes the number of ACE bits per unit of
time multiplied by the intrinsic fault rate. As long as we measure SER for a
single-program workload by running (a well-defined section of) the workload
to completion, we can safely evaluate reliability using SER because the unit of
work is constant.

3.2.2 Multiprogram Workloads

SER breaks down for multiprogram workloads. We cannot simply add up
SER numbers for each of the applications in a multiprogram workload because
some applications are inherently more vulnerable to soft errors than others —
adding raw SER numbers would give too much weight to fast-running appli-
cations and too little weight to slow-running applications. This is similar to
performance metrics for multiprogram workloads, i.e., adding plain IPC num-
bers gives more weight to high-IPC applications. The fundamental problem
here is that SER does not take into account the impact of performance on the
error rate: lower performance makes the application run longer, increasing the
probability for an error during its execution.

SER falling short for multiprogram workloads is illustrated with an example
in Table 3.1. The execution time and ABC are given for a workload running
on big and small cores. For this hypothetical example, the ratio of the SER on
big core versus small core is 3, which suggests that the big core is three times
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less reliable compared to the small core; we assume same IFR on the big and
small cores. However, if we look at the ratio of the ABC on the big and small
cores — which truly reflects the amount of correct-path state exposed by the
application on the two core types — the big core is twice as less reliable than
the small core. Hence, SER favors small cores (more than what they actually
should be.) Therefore, it is crucial to include the slowdown caused by different
core types while estimating reliability on a heterogeneous multicore processor.
In the following section, we propose a novel metric that includes the impact
of performance on the reliability assessment on a (heterogeneous) multicore
processor.

3.2.3 System Soft Error Rate

To include the impact of performance on SER, we weight per-application
SER with the slowdown incurred because of multiprogram execution. Ap-
plication slowdown is defined as the execution time of an application on the
(heterogeneous) multicore divided by its execution time on a reference machine
(e.g., an isolated big core). A slowdown of 1 means that the application ex-
ecutes equally fast as on the reference machine; a slowdown of 2 means that
the application takes twice as long under multiprogram execution compared to
isolated execution. We then define weighted SER (wSER) of an application in
a multipropgram workload as follows:

wSER =
ABC

T
· T

Tref
· IFR =

ABC

Tref
· IFR, (3.2)

with ABC and T the ABC and execution time of the application in the multi-
program workload, respectively; and Tref the execution time of the application
on an isolated reference core (e.g., a big core in a heterogeneous multicore). In
other words, wSER weights the application’s SER during multiprogram exe-
cution with its slowdown compared to isolated execution. This is to account
for the fact that if the application runs longer during multiprogram execution
(which is what you would expect because of interference in shared resources),
it gets exposed to soft errors for a longer duration.

Summing the weighted SER values for the individual applications in a mul-
tiprogram workload then yields our novel system soft error rate (SSER) metric:

SSER =

n∑
i=1

wSERi =

n∑
i=1

ABC i

Ti,ref
· IFR, (3.3)

which quantifies the total weighted SER across all the applications in the mul-
tiprogram workload. SSER gives a higher weight to slow-running applications
in the multiprogram workload mix, and a smaller weight to fast-running appli-
cations. This is to account for the fact that slow-running applications will be
exposed to soft errors for a longer duration, hence we scale their per-application
SER proportionally with their relative slowdown.
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(a) homogeneous multicore: SSER=2
SER slowdown wSER

benchmark A on big 1 1 1
benchmark B on big 1 1 1

(b) homogeneous multicore: SSER=3
SER slowdown wSER

benchmark A on big 1 2 2
benchmark B on big 1 1 1

(c) heterogeneous multicore: SSER=1.5
SER slowdown wSER

benchmark A on small 1/8 4 0.5
benchmark B on big 1 1 1

Table 3.2: Examples illustrating the SSER metric.

3.2.4 Illustrative Examples

We now illustrate the intuitive and system-level meaning of SSER using a
couple examples, see also Table 3.2. Consider a homogeneous multicore with
two big cores, and assume that the two co-running applications do not interfere
with each other, i.e., they both run equally fast on the homogeneous multicore
compared to isolated core execution — example (a) in Table 3.2. Assume fur-
ther that per-application SER is not affected by multiprogram execution. SSER
equals 2 in this case, which makes perfect sense: the system’s vulnerability is
twice as high on the homogeneous multicore compared to isolated execution
because we now have two co-running applications.

Assume now that one application slows down by a factor of 2 (e.g., because
of hardware interference) and the other application is not affected at all —
example (b) in Table 3.2. In this case, SSER equals 3, i.e., a weighted SER of
1 for the application that does not slow down, plus a weighted SER of 2 for
the application that slows down by a factor two. This makes intuitive sense
because it takes two times as long for the slow application to get the same
amount of work done, and therefore the slow application is twice as vulnerable.

Consider now a heterogeneous multicore — example (c) in Table 3.2. The
application that runs on the small core experiences a slowdown of 4 while its
SER reduces by a factor of 8 compared to running on the big core. As a result,
its weighted SER equals 0.5, i.e., the application is slowed down by a factor of
4 but it is 8 times less vulnerable to soft errors per unit of time, hence it is only
half as vulnerable for getting the work done. SSER thus equals 1.5. Note that
SSER in example (c) is smaller than for the homogeneous multicore examples
(a) and (b); this is due to the fact that even though the benchmark running on
the small core slows down substantially, it exposes way fewer ACE bits, which
leads to a net reduction in overall system vulnerability.
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3.3 Reliability-Aware Scheduling

Having demonstrated the potential for reliability-aware scheduling and hav-
ing derived the SSER metric for quantifying system-level reliability, we now
describe our sampling-based reliability-aware scheduler for heterogeneous mul-
ticores. Figure 3.4 shows the sequence of steps followed by the scheduler. We
assume that we can measure the performance of each application on each core
(e.g., the number of instructions executed during the last scheduler quantum),
and the number of ACE bits in each structure (i.e., ACE bit counter or ABC
over the past quantum), which we both need to compute SSER. In this section,
we explain the working of the scheduling algorithm; we quantify the hardware
overhead for measuring ABC later in the Section 3.4.

3.3.1 Scheduling Algorithm

The scheduler starts with an initial sampling phase to collect performance
and ABC information for each application on each core type. We assume
that the number of applications equals the total number of cores, leading to
each application running on a core for every quantum of the execution. If
the number of big cores equals the number of small cores, this requires two
sampling quanta: putting half of the applications on a big core and half on
a small core in the first sampling quantum, and inverting this schedule in the
next sampling quantum, i.e., the applications running on a big core are moved
to a small core, and vice versa. If the number of big cores differs from the
number of small cores, e.g., one big core and three small cores, more quanta
are needed to sample each application on each core type (4 sampling quanta
in this example). After this initial sampling phase, the scheduler follows the
algorithm described in Algorithm 1.

The algorithm first verifies whether the sampled data is recent. If an ap-
plication has run for 10 consecutive scheduler quanta on the same core type, a
sampling phase is triggered: the application is scheduled on the other core type
by switching it (during a short sampling quantum) with the application that
is running for the most consecutive quanta on the other core type. Like this,
the scheduler ensures that the sample data is up-to-date, adapting to potential
execution phase changes.

If all applications have recently sampled data for both core types, the sched-
uler calculates the weighted SER (wSER) for each application if we were to
schedule them on the other core type than they are currently scheduled on. It
then selects the application with the highest wSER reduction and the applica-
tion with the smallest wSER increase, and checks whether switching the two
applications leads to a net overall SSER reduction. If so, the applications are
switched, and the next couple is checked. If no global SSER reduction can be
obtained, the current schedule is maintained for the next scheduler quantum.
After finishing a quantum, the sample data is automatically updated.
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Algorithm 1 Sampling-based reliability-aware scheduler (n is the number of
applications.)

1: sampleRequired = false
2: quantumNumber = 0
3: lastSampledAt = 0
4: while true do
5: if quantumNumber ≤ 2

or (quantumNumber − lastSampledAt) == 10 then
6: sampleRequired = true
7: end if
8: if sampleRequired == true then
9: startSamplingPhase()

10: lastSampledAt = quantumNumber

11: sampleRequired = false
12: continue
13: end if
14: for i = 1 to n do
15: reduction[i] = getWeightedSERReduction(i)

16: coreAssigned[i] = false
17: for j = i + 1 to n do
18: maxReduction[i,j]= 0
19: end for
20: end for
21: for i = 1 to n do
22: for j = i + 1 to n do
23: if coreType[i] == coreType[j] then

24: continue
25: end if

26: if (reduction[i] − reduction[j]) > maxReduction[i,j] then

27: maxReduction[i,j] =

reduction[i] - reduction[j]

28: end if

29: end for
30: end for

{sortedReductions contains an array of n maxReductions[i,j] in their decreasing order}

31: sortedReductions[n] = sortMaxReductions()

32: for k = 1 to n do
33: currReduction[i,j] = sortedReductions[k]

34: if currReduction[i,j] > 0
and coreAssigned[i] == false
and coreAssigned[j] == false then

35: switchCoreTypes(i,j)

36: coreAssigned[i]= true
37: coreAssigned[j]= true
38: end if

39: end for
40: for i = 1 to n do
41: ABC[i] = getCurrentQuantumABC(i)

42: IPC[i] = getCurrentQuantumIPC(i)

43: end for
44: quantumNumber++

45: end while
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Figure 3.4: Flow chart representing the sequence of steps followed by the
reliability-aware scheduler for improving system reliability on a heterogeneous
multicore processor.

We need to sample both performance and ABC, because the SSER metric
needs both. Sampling ABC requires hardware support to compute occupancy
in all relevant processor structures, as we will describe in the next section.
Sampling performance can be done by counting the number of instructions
executed per quantum – we sample at fixed time quanta (1 ms in our setup).
This involves a basic performance counter as is implemented in most recent
processors. To compute an application’s slowdown, we take the big core as the
reference core. Because we have no reference performance data of an isolated
big core execution, we assume that the sampled big core performance is a good
proxy for reference core performance. Note that the sampled value is subject to
interference in the shared resources (e.g., shared cache and memory) because
other programs are co-running while sampling.

It is important for a sampling-based scheduler to limit sampling overhead.
On the other hand, we need to sample for a sufficiently long period of time in
order to obtain stable sampling information. This is why we make a distinction
between a sampling quantum and a scheduler quantum. We set the scheduler
quantum to 1 ms in all of our experiments, and the sampling quantum to one
tenth the scheduler quantum or 0.1 ms. All results in the evaluation section
include sampling overhead.

3.3.2 A Two-Program Workload Example

We illustrate the working of reliability-aware scheduler with a two-program
workload consisting of calculix and povray; the time varying reaction of the
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Figure 3.5: ABC over time for calculix and povray when executed in
isolation on a big core (on the left) and as a two-program workload on one big
core and one small core under reliability-aware scheduling (on the right).

scheduler for this two-program workload is shown in Figure 3.5. Each dot
represents ABC per 1 ms. The left graph shows ABC over time for calculix

and povray when executed in isolation on a big core; the right graph shows
ABC when executed concurrently on an HCMP with one big and one small core.
When run in isolation, povray experiences almost constant ABC; calculix on
the other hand experiences a big drop in ABC towards the end of its execution.
When co-executed on the HCMP, calculix is scheduled on the small core
initially due to its high big-core ABC compared to povray. Upon the phase
change in calculix, the scheduler reacts by migrating the two applications.
The two-program workload case also illustrates sampling overhead: sampling
is initiated once every 10 scheduler quanta for only one tenth of the quantum,
so we sample one percent of the time. Sampling incurs the drops and spikes in
the ABC curves.

3.4 Hardware Overhead

As mentioned in the previous section, computing ABC in support of our
reliability-aware scheduler requires hardware support. For an out-of-order core,
we need counters for the five major structures, including the ROB, issue queue
(IQ), load/store queue, register file (RF), and functional units (FU). Further-
more, we also need to factor out wrong-path and NOP instructions. We propose
the following hardware additions. Per ROB entry, we keep two extra counters:
one for recording the dispatch time of an instruction (i.e., the time it is in-
serted into the ROB), and one for recording the issue time (i.e., the time the
instruction starts executing). These counters should be large enough to cover
the maximum number of cycles an instruction resides in the ROB; we set the
size of the counter to be 12 bits (maximum of 4096 cycles). At the time the
instruction commits — which ensures that it is a correct-path instruction —
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we can deduce the time this instruction spent in each of the relevant structures
as follows:
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Figure 3.6: ABC stacks for the out-of-order core.
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Figure 3.7: Correlation between core-ABC and ROB-ABC for the SPEC
CPU2006 benchmarks on the big out-of-order core. Benchmarks are sorted in
the increasing order of their core-ABC. ROB-ABC is strongly correlated with
core-ABC and using ROB-ABC for scheduling reduces hardware overhead
from 906 bytes to 296 bytes.

• The time spent in the ROB is the commit time minus the dispatch time.

• The time spent in the issue queue is the issue time minus the dispatch
time.
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• For a load or store instruction, the time spent in the load/store queue is
the commit time minus the dispatch time — we model an architecture
where load/store queue entries are allocated at dispatch time.

• The time the physical output register of an instruction is ACE is the com-
mit time minus the finish time (which is the issue time plus its latency).
Note that all architectural registers are ACE all of the time.

• The time spent in a functional unit is the functional unit’s execution
latency.

At the commit stage, where we keep one counter for each of the five struc-
tures, we add the per-instruction occupation time in each of the five structures
to the respective overall counters. By doing so, the counters keep track of the
accumulated occupancy in the respective structures. At the end of a quantum,
total ABC is calculated as the accumulated occupancy times the number of
bits per entry — the multiplication is done by the scheduler in software.

The total hardware overhead amounts to:

• Two 12-bit counters per ROB entry, which amounts to 3072 bits for an
128-entry ROB.

• One 32-bit counter per profiled structure, which amounts to 160 bits for
5 counters (with one counter per structure). 32 bits is sufficient for the
quantum size in our setup (2.6 million cycles times at 2.6 GHz, and at
most 128 entries per structure).

• Additional functional units for calculating occupancy and adding them
to the counter. We need 5 adders per instruction in the data path (one
per structure), and since up to 4 instructions can commit per cycle, this
requires 20 adders in total.

Total hardware overhead thus equals 3,232 bits plus 20 adders. Extrapolation
from [206] suggests that a 32-bit adder consumes about 1,200 transistors. One
SRAM cell contains 6 transistors, so a rough equivalence relation is 200 SRAM
bits for one 32-bit adder. So, in total the hardware overhead of this baseline
implementation equals 7,232 bits or 904 bytes. To reduce the hardware over-
head for the big core, the scheduler can use ACE bit information of the ROB
only. We choose the ROB, because it is a central structure, containing a lot
of useful state, and all other structures contain a subset of the instructions in
the ROB. This is confirmed by the ACE bit counter (ABC) stacks shown in
Figure 3.6 for the one-billion instruction workloads considered in this study.
ABC stacks represent the breakdown of the total occupancy of a core in its
microarchitecture structures. As Figure 3.7 shows, ROB ABC correlates very
well with overall core ABC (correlation coefficient of 0.99), and contributes
to almost half of the total occupancy of the core across all benchmarks. In
other words, ROB ABC can serve as a proxy for the overall core ABC, which
allows for correct scheduling decisions to be made using relative ABC numbers
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across applications. For this implementation, we only need the dispatch time
per ROB entry (12 bits times 128 entries equals 1,536 bits), one ROB ACE
counter (32 bit) and 4 adders, resulting in a total of 2,368 bit equivalents or
296 bytes in total for this area-optimized implementation.

For the small in-order core, we only keep track of the fetch time. Because all
instructions need to go through all stages, and each stage has a similar buffer
for each instruction, we calculate the time between fetch and writeback of each
instruction as a way to account for the number of ACE bits in the pipeline
buffers. In addition, we add the functional unit ACE bits by multiplying the
latency of the operation by the size of the functional unit. This requires 10
fetch time counters (5 stages times 2 instructions per stage) at 10 bits per
counter (the time an instruction spends in the in-order core is usually less than
in an out-of-order core), and one 32-bit total ACE counter (132 bits and two
adders in total, resulting in 532 bit equivalents or 67 bytes).

3.5 Methodology

3.5.1 Experimental Setup

Because there is no way of evaluating architectural vulnerability on real
hardware, we evaluate our scheduler using simulation. We use Sniper 6.0 [32]
using its most detailed cycle-level core model. Sniper supports the x86 ISA
(including x86-64 and SSE2) and runs both multiprogram workloads as well
as multithreaded applications. This simulator has been validated against real
hardware with a reported error that is similar to other academic simulators [32].
Note that the proposed reliability-aware scheduler is a generic solution that is
applicable to any ISA. It is not geared towards a specific ISA, and can be
deployed to any specific (micro)architecture.

We augment Sniper with ACE bit counters to count the number of ACE
bits in the different structures. For the big out-of-order core, we count ACE
bits in the ROB, issue queue, load/store queue, register file and functional
units. Similarly, for the small in-order core, we count ACE bits in the fetch,
decode, register read, execute and write-back stages. NOPs and wrong-path
instructions are assumed un-ACE. Table 3.3 shows the configurations of the
big out-of-order and the small in-order core types, as well as the bit counts per
entry in each structure (taken from Nair et al. [145]). The big core includes an
8-stage front-end pipeline, i.e., we assume 8 stages between fetch and dispatch
— the total number of pipeline stages is larger. We assume that the architec-
tural state of a program is always protected. We consider a merged register
file organization, similar to Intel Pentium 4, MIPS R12000 and Alpha 21264
processors [70, 86], where the same register file keeps speculative and (com-
mitted) architectural state of the program. We do not include the cache in
the ACE calculation, because the cache configuration is the same for both core
types, and caches typically include error detection and correction mechanisms,
making them less vulnerable to soft errors. Our default configuration assumes
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Big core Small core

Frequency 2.66 GHz 2.66 GHz
Type out-of-order in-order
ROB size 128, 76 bit/entry -
Issue queue size 64, 32 bit/entry 4, 32 bit/entry
Load queue size 64, 80 bit/entry -
Store queue size 64, 144 bit/entry 10, 144 bit/entry
Pipeline width 4 2
Pipeline depth 8 stages 5 stages

(front-end only) 2 × 76 bit/stage
Functional units 3 int add (1 cyc) 2 int add (1 cyc)

1 int mult (3 cyc) 1 int mult (3 cyc)
1 int div (18 cyc) 1 int div (18 cyc)
1 fp add (3 cyc) 1 fp add (3 cyc)
1 fp mult (5 cyc) 1 fp mult (5 cyc)
1 fp div (6 cyc) 1 fp div (6 cyc)

Register file 120 int (64 bit) 16 int (64 bit)
96 fp (128 bit) 16 fp (128 bit)

L1 I-cache 32 KB, assoc 4, 2 cyc 32 KB, assoc 4, 2 cyc
L1 D-cache 32 KB, assoc 8, 4 cyc 32 KB, assoc 8, 4 cyc
Private L2 cache 256 KB, assoc 8, 8 cyc 256 KB, assoc 8, 8 cyc

Shared L3 cache 8 MB, assoc 16, lat 30 cyc
Memory BW 25.6 GB/s, lat 45 ns

Table 3.3: Big and small core configurations.

the same frequency for both core types, but we also evaluate the impact of
having a lower frequency for the small core than the big core.

3.5.2 Workloads

We create multiprogram workloads from the SPEC CPU2006 benchmarks.
We construct 1 billion instruction SimPoints [180] for each benchmark. We cat-
egorize benchmarks into three groups, based on their sensitivity to reliability-
aware scheduling, see also Figure 3.1. The eight benchmarks with the highest
AVF are classified in the high sensitivity group (H); the eight benchmarks
with the lowest AVF are classified as low sensitivity (L); and the 13 remaining
benchmarks have medium sensitivity (M). For the two-program combinations,
we make 6 categories of mixes: HH, HM, HL, MM, ML and LL. We randomly
generate 6 workloads in each category — but we also make sure that each
benchmark occurs at least once — leading to 36 evaluated workloads. For the
four-program combinations, we take the same 6 mix categories by doubling the
benchmark categories: HHHH, HHMM, HHLL, MMMM, MMLL and LLLL,
and again generate 6 workloads in each category. We do not duplicate indi-
vidual benchmarks, i.e., HHHH contains four different benchmarks. We do
another doubling round for the eight-program combinations. The benchmarks
making the four-program workloads are shown below:

1. bwaves-milc-cactusADM-sphinx3

2. bzip2-perlbench-wrf-cactusADM
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3. gamess-calculix-cactusADM-sphinx3

4. GemsFDTD-gromacs-tonto-namd

5. GemsFDTD-gromacs-wrf-lbm

6. gobmk-zeusmp-sjeng-bzip2

7. gobmk-zeusmp-sjeng-tonto

8. h264ref-mcf-bwaves-milc

9. h264ref-mcf-gamess-calculix

10. hmmer-povray-cactusADM-sphinx3

11. hmmer-povray-gamess-calculix

12. lbm-h264ref-mcf-bwaves

13. leslie3d-bzip2-perlbench-wrf

14. leslie3d-dealII-bwaves-milc

15. leslie3d-dealII-cactusADM-sphinx3

16. libquantum-gcc-gamess-calculix

17. libquantum-gcc-hmmer-povray

18. libquantum-gcc-leslie3d-dealII

19. libquantum-gcc-wrf-lbm

20. libquantum-gcc-xalancbmk-soplex

21. milc-gobmk-zeusmp-sjeng

22. omnetpp-astar-cactusADM-sphinx3

23. omnetpp-astar-GemsFDTD-gromacs

24. omnetpp-astar-leslie3d-dealII

25. omnetpp-astar-libquantum-gcc

26. omnetpp-astar-tonto-namd

27. omnetpp-astar-xalancbmk-soplex

28. omnetpp-gobmk-zeusmp-sjeng

29. perlbench-GemsFDTD-gromacs-wrf

30. tonto-namd-cactusADM-sphinx3

31. tonto-namd-gamess-calculix

32. tonto-namd-hmmer-povray

33. wrf-lbm-hmmer-povray

34. xalancbmk-soplex-gamess-calculix

35. xalancbmk-soplex-h264ref-mcf

36. xalancbmk-soplex-leslie3d-dealII

We evaluate the two-program workloads on an HCMP consisting of 1 big
and 1 small core (denoted 1B1S). The four-program workloads are evaluated on
both symmetric and asymmetric HCMPs. In a symmetric HCMP, the number
of big cores equals the number of small cores, while in an asymmetric HCMP,
the number of big cores differs from the number of small cores. We evaluate
our four-program workloads on a symmetric HCMP configuration consisting of
2 big and 2 small cores (2B2S), and also on asymmetric HCMP configurations:
1 big, 3 small cores (1B3S) and 3 big, 1 small cores (3B1S). The eight-program
combinations are evaluated on a symmetric HCMP with 4 big and 4 small cores
(4B4S). The standard quantum time is 1 ms. For each experiment, the longest
running application executes its full 1 billion instruction SimPoint, and the
faster running applications are restarted until the end of the experiment. For
the applications that restart, we record performance and wSER across all rep-
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etitions of that application. The reason is that the longer running application
could enter a new phase near the end of its execution, causing the schedule to
change, which in its turn impacts the other co-running application(s). Taking
results from the first execution only for the repeating application(s) would not
cover these changes in the schedule.

3.5.3 Migration Overhead

The overhead for saving and restoring microarchitectural state to support
core migration plus the overhead of weighted speedup/SER calculation is (con-
servatively) modeled as 20 µs. The impact of cache warming (including cache-
to-cache transfer latency) is modeled faithfully in the simulator. This overhead
has a negligible impact on the final results: less than 1% for a random scheduler
that switches every quantum, and less than 0.5% for both the performance- and
reliability-optimized schedulers.

3.6 Evaluation

We evaluate the following three schedulers:

• The random scheduler, for each time slice, randomly selects the applica-
tions to run on the big core(s).

• The reliability-optimized scheduler optimizes SSER using the algorithm
from Section 3.3.

• The performance-optimized scheduler optimizes system throughput
(STP) [60] or weighted speedup, using the same sampling-based schedul-
ing algorithm optimizing for STP rather than SSER.

We first analyze the results for the 2B2S configuration. Next, we show how
our scheduler performs for different core and application counts, as well as
for asymmetric HCMP configurations. We also show the impact of using only
ROB ACE bits to steer scheduling, the impact of the sampling period, and the
impact of reducing the frequency of the small core.

3.6.1 2B2S Results

Figure 3.8 evaluates system soft error rate (SSER) and system throughput
(STP) for the reliability- and performance-optimized schedulers, normalized to
the random scheduler, for four-program workloads running on a 2B2S HCMP.
SSER is a lower-is-better metric, while STP is a higher-is-better metric. Each
dot represents a workload; the workloads are sorted by SSER and STP, respec-
tively.
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Figure 3.8: System soft error rate (a) and system throughput (b) for
reliability- and performance-optimized scheduling normalized to random
scheduling for all four-program workloads on an HCMP with 2 big cores and
2 small cores. The reliability-optimized scheduler significantly and consistently
improves reliability; overall, reliability improves by 25.4% compared to the
performance-optimized scheduler.

The reliability-optimized scheduler significantly and consistently improves
reliability, i.e., SSER reduces by 32% on average and up to 55.6% compared
to the random scheduler; and by 25.4% on average and by up to 60.2% com-
pared to the performance-optimized scheduler. Reliability-aware scheduling ef-
fectively determines which applications are most vulnerable to soft errors and
puts those applications on the small cores to improve overall system reliability.

The performance-optimized scheduler also reduces SSER over the random
scheduler (by 7.3% on average). This improvement is substantially smaller and,
moreover, it is not consistent, i.e., reliability decreases for a number of work-
loads. The reason for the (average) improved reliability is the apparent correla-
tion between performance and reliability. For example, sjeng and povray are
compute-intensive benchmarks. The performance-optimized scheduler will run
both sjeng and povray on the big cores. However, as Figure 3.1 shows, these
benchmarks do not expose a large vulnerable state on the big core relative to
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Figure 3.9: SSER (a) and STP (b) on a 2B2S system per workload category.
Workload categories with more divergent AVF among benchmarks experience
the highest improvement in system reliability.

the small core. Scheduling these benchmarks on the big cores improves both
performance and reliability.

In terms of performance, the reliability-optimized scheduler yields similar
performance to the random scheduler (half of the workloads are worse, half are
better, resulting in an average near 0% difference), and degrades performance
by only 6.3% on average (and by 18.7% at most) compared to the performance-
optimized scheduler. The performance improvement of performance-optimized
scheduling over random scheduling is in line with prior work [207].

3.6.2 Analysis by Workload Category

Figure 3.9 shows the same results as Figure 3.8 but now groups the results
per workload category, with the categories defined based on big-core AVF,
see Section 3.1.2. The largest improvement in system reliability is observed
for the workload category that includes high-AVF applications and low-AVF
applications (see ‘HHLL’). This does not come as a surprise: the high-AVF
applications are scheduled on the small cores to reduce overall system reliability,
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Figure 3.10: SSER across asymmetric HCMPs with 4 cores in total. Higher
improvements in system reliability are obtained for symmetric HCMPs than
asymmetric HCMPs.

while scheduling the low-AVF applications on the big cores. The workload
categories with less divergent application behavior (‘HHMM’ and ‘MMLL’)
also show substantial improvements in reliability, though not as high as for the
‘HHLL’ category. Here, again, reliability-aware scheduling is able to schedule
the applications with high AVF (relative to the other applications in the mix)
on the small cores and vice versa. For the workload categories with similarly
AVF-sensitive applications (all ‘H’, ‘M’ or ‘L’ applications), we observe modest
improvement in reliability. The reliability-aware scheduler makes the correct
scheduling decisions in terms of AVF, i.e., it schedules applications with the
highest AVF on the small cores and the applications with the lowest AVF on the
big cores. Nevertheless, this leads to a small improvement in system reliability
because of the lower system performance compared to performance-optimized
scheduling, which tempers the improvement in soft error rate — remember that
SSER weights relative per-application slowdown.

3.6.3 Asymmetric HCMPs

The results in the previous sections assume symmetric HCMPs, i.e., the
number of big cores equals the number of small cores. We now evaluate asym-
metric HCMP configurations for four-program workloads: 1 big and 3 small
cores (1B3S), and 3 big and 1 small cores (3B1S), see Figure 3.10. The most
noteworthy observation from this graph is that the highest reduction in SSER
is obtained for the symmetric HCMP configuration; this is due to the fact that
there are more scheduling opportunities on the symmetric HCMP than on the
asymmetric HCMPs, i.e., 2 out of 4 applications need to be selected to run
on a small core on the symmetric HCMP (2 combinations out of 4 leads to
6 possibilities) as opposed to one application to run on the big or small core
in the asymmetric HCMPs (1 combination out of 4 leads to only 4 possibili-
ties). The reduction in SSER on the 3B1S system (7.8%) is smaller than on
the 1B3S system (27.5%) because there is only one small core available in the
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Figure 3.11: SSER for the 2B2S system with the small cores running at
different frequency settings. Reliability-aware scheduling is robust with respect
to small-core frequency setting.

former system; this limits the scheduling opportunities to reduce soft error rate
by migrating one of the co-running applications to the small core.

3.6.4 Lowering Small Core Frequency

So far, we assumed that the big and small cores run at the same frequency.
We now evaluate the robustness of the reliability-aware scheduler with respect
to frequency setting, see Figure 3.11. To this end, we set small-core frequency
to 1.33 GHz while running the big core at 2.66 GHz. The bottom line is that
reliability-aware scheduling is robust with respect to frequency setting: sys-
tem reliability improves by 29.8% compared to random scheduling for the low-
frequency small core. This improvement is slightly smaller compared to the
high-frequency small core case because lowering the small core’s frequency also
lowers its performance, which increases its weighted SER because of the larger
slowdown compared to big-core performance. This reduces the opportunity
for reliability-aware scheduling to improve reliability compared to the high-
frequency small core case. The performance-optimized scheduler on the other
hand improves reliability more for the low-frequency small core than for the
high-frequency small core (13% versus 7.3%) compared to random scheduling.
This is a side-effect of the wider gap between big and small core performance.
Performance-optimized scheduling improves overall system performance com-
pared to random scheduling (by 10% on average), which decreases an applica-
tion’s weighted SER and improves overall system reliability more than random
scheduling.

3.6.5 Changing Core Count

Figure 3.12 evaluates SSER across two-, four- and eight-program combi-
nations on symmetric HCMPs (1B1S, 2B2S, and 4B4S). The results are con-
sistent across core counts: the reliability-optimized scheduler significantly im-
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Figure 3.12: SSER as a function of core count, assuming symmetric HCMPs
and considering ROB ABC in addition to core ABC.

proves system soft error rate compared to random scheduling by 29.3%, 32%
and 29.8% on average for 1B1S, 2B2S and 4B4S, respectively, while yielding
comparable performance to the random scheduler, and only slightly worse per-
formance compared to the performance-optimized scheduler (within 6.3% on
average). This result shows that our scheduler scales well with core count and
the number of co-running applications.

3.6.6 ROB ACE Bit Counter

Up to now, we assumed an ACE bit counter for all structures. To reduce
hardware overhead by a factor of 3, as previously described in Section 3.4, the
area-optimized implementation counts ACE bit information in the ROB only.
Figure 3.12 shows SSER for reliability-aware scheduling using core ABC versus
ROB ABC. The relative difference is negligible (31.6% reduction in SSER for
ROB ABC versus 32% for core ABC for the 2B2S system), which justifies the
reduction in hardware cost by only tracking ROB ABC.

3.6.7 Sample Rate

Figure 3.13 evaluates the impact on system reliability and performance
while varying the sample rate to keep the big and small core performance and
soft error rates up to date, see also Section 3.3.1. Our default sampling period
SP is set to 10, i.e., we initiate a sampling phase every 10 scheduler quanta,
and we sample for a sampling quantum of 0.1 milliseconds. Two interesting ob-
servations are to be made here. First, reliability improves for smaller sampling
quanta as a result of reduced sampling overhead. Second, reliability improves
as we increase the sampling period, i.e., as we sample less frequently. This
suggests that our workloads show relatively stable time-varying execution be-
havior. However, some workloads clearly benefit from having a high sample
frequency. For example, the workload consisting of xalancbmk, soplex, leslie3d
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Figure 3.13: SSER (a) and STP (b) for a 2B2S system while varying the
sampling parameters (r, s), i.e., sampling every r quanta for smilliseconds
(i.e., the sampling quantum).

and dealII has a 18.4% reduction in SSER for a sampling period of 10, whereas
SSER reduces by only 10% for a sample period of 100.

3.7 Power Analysis

There is an important trade-off between performance, power, and reliabil-
ity, as corroborated by a recent study [199]. In the previous section, we focused
on performance and reliability. However, changing the workload schedule on
a heterogeneous multicore also affects power consumption. Therefore, in this
section, we first evaluate how reliability-aware scheduling affects power con-
sumption. We then subsequently explore the trade-off between scheduling for
performance, power and reliability.
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Figure 3.14: Impact on chip-level and total system power consumption.

3.7.1 Impact of Reliability-Aware Scheduling on Power

Figure 3.14 quantifies the impact on chip-level power (including L3) and
total system power (processor plus DRAM) with increasing core count. We
use McPAT [118] to quantify power consumption. The bottom line is that
reliability-optimized scheduling reduces chip-level and system power by 6% and
6.2% on average, respectively, relative to performance-optimized scheduling.
The reason is that performance-optimized scheduling puts applications on a big
core for performance reasons although this may increase power consumption.
For example, a memory-intensive application with high degrees of MLP will be
scheduled on the big core to improve performance [207]; this will lead to an
increase in power consumption. The reliability-aware scheduler on the other
hand schedules this workload on the small core to reduce soft error vulnerability,
also reducing power.

3.7.2 Trade-Offs in Performance-, Power- and Reliability-
Optimized Scheduling

We implemented a power-optimized scheduler to evaluate the impact of op-
timizing for power on reliability. The power-optimized scheduler, alike our
reliability- and performance-optimized schedulers, is a sampling-based sched-
uler. The scheduling decision is based on the energy consumed by each core per
quantum. Note that an ideal power- or reliability-optimized schedule can be
achieved by scheduling workloads on small cores in a sequential manner. How-
ever, all our scheduling policies maintain the fundamental assumption that
no core remains idle while an HCMP is executing a multiprogram workload.
Figure 3.15 shows the relationship among power, performance and reliability
when we execute four-program workloads on 2 big and 2 small cores. Optimiz-
ing power always leads to performance degradation, and also leads to an overall
improvement in reliability (by 12.2% on average) compared to random schedul-
ing. Benchmarks such as cactusADM and hmmer expose a large state inside the
big core, leading to high soft error vulnerability and high power consumption.
Such benchmarks are scheduled on a small core to improve both power and
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Figure 3.15: Comparing performance-, reliability- and power-optimized
schedulers for all four-program workloads on an HCMP with 2 big cores and 2
small cores. All results are normalized to the random scheduler.

reliability. For such benchmarks, optimizing for power also leads to an im-
provement in reliability, and vice versa, optimizing reliability also improves
power.

There are several workloads for which a reliability-optimized schedule is
different from a power-optimized schedule. For example, milc and sjeng run
on different core types for reliability and power when they co-run. Compared
to milc, sjeng incurs much higher power on the big core compared to the
small core. Therefore, for power, it is always scheduled on the small core. On
the other hand, milc is a memory-intensive benchmark that maintains a large
vulnerable state inside the core while waiting for long-latency memory requests
to complete. Since the difference in SER for sjeng is small between the big
and small cores, the reliability-optimized scheduler runs milc on the small core
and sjeng on the big core.

The key take-away from the results reported in Figure 3.15 is that there is
a trade-off between performance-, power- and reliability-optimized scheduling.
Performance-optimized scheduling leads to high performance, but also leads to
high power consumption and soft error vulnerability. Power-optimized schedul-
ing minimizes power consumption, however this comes at a cost in performance.
Reliability to soft errors slightly improves under power-optimized scheduling
compared to performance-optimized scheduling. Reliability-optimized schedul-
ing improves reliability by a significant margin while being on par with random
scheduling in terms of performance and power consumption.
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3.8 Reliability-Aware Scheduling under Perfor-
mance Constraints

So far, we assumed that the goal is to optimize reliability while considering
performance after the fact, i.e., we schedule applications to core types to opti-
mize for reliability and we pay the cost this may incur in terms of performance.
In many systems however, performance is more important than reliability, and
one may not be willing to pay an average 6.3% performance degradation com-
pared to performance-optimized scheduling, even if this improves reliability by
25.4% on average, as previously reported. Although reliability is an impor-
tant concern, one may not want to incur a performance hit by more than a
predefined limit, say 2%, but within this constraint one may yet want to im-
prove reliability. In this section, we explore reliability-aware scheduling under
performance constraints.

With a minimum acceptable performance level specified, we propose to
augment the scheduler with a mechanism to dynamically switch between the
reliability- and performance-optimized modes at runtime. The decision to
choose either of the two modes depends on the requirements of the system
and the workload under execution. If reliability is of utmost importance — for
example, in systems working at higher altitudes in space — the goal should be
to optimize for reliability. In such cases, running in the reliability-optimized
mode suits the best. However, when performance is the key concern and
performance is not allowed to drop below a certain performance level rela-
tive to performance-optimized scheduling, the scheduler should switch to the
performance-optimized mode once the performance is about to drop below the
specified level.

3.8.1 Scheduling Mechanism

To achieve performance above a specified level, we need to keep track of
performance while improving reliability. At the end of every scheduling quan-
tum, we estimate performance (i.e., STP) for all possible schedules and discard
the schedules not meeting our performance criterion. Of the remaining sched-
ules, we choose the schedule with the lowest SSER as the schedule for the
next quantum. If an application continues to run on a particular core type
for 10 consecutive scheduling quanta (1 ms each), a sampling phase (0.1 ms) is
triggered to account for the possibility of a phase change in the application’s
execution behavior.

3.8.2 Evaluation

To evaluate reliability-aware scheduling under performance constraints, we
consider reliability (SSER) and performance (STP) for four-program workloads
on a 2B2S system under various performance constraints, see Figure 3.16. We
start with the performance-optimized scheduler (shown on the left) and gradu-
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Figure 3.16: Average reliability (SSER) and performance (STP) relative to
the random scheduler for reliability-aware scheduling under performance
constraints, for four-program workloads on a 2B2S system.

ally increase the allowable performance degradation. Eventually, when there is
no performance constraint, we end up with the reliability-optimized scheduler
(shown on the right). When the performance limit is set at x%, the STP of the
four-program workload must never be degraded by more than x% at any point
during the execution compared to the performance-optimized schedule. For ex-
ample, when the performance limit is set at 4%, and the highest possible STP
of a four-program workload in a scheduler quantum is 3.0 on a 2B2S system,
then the scheduler should map applications in such a manner that the STP
does not degrade below 2.88 (4% degradation of 3.0). This constraint is met
every quantum and ensures that the workload will not experience an overall
performance degradation by more than 4%; in fact, the average performance
degradation is typically smaller than the performance limit that was set.

It is important to note that a performance constraint can also be imposed
for a longer interval than a per-quantum basis. However, in this section, we
aim to improve reliability without delaying the response of the system beyond
a specified threshold at all times. One such scenario occurs for interactive
applications. If the performance of an application degrades beyond the human
perception threshold, the user may notice a difference in the response time.
However, as long as the performance is maintained within this threshold, the
OS can run in the reliability-optimized mode to minimize the number of soft
errors.

The results in Figure 3.16 indicate a clear trend — increasing the allowable
performance limit increases the performance degradation while at the same
time improving reliability, as expected. At small performance constraints, the
improvement in reliability is limited and so is the impact on performance. The
reason for the small impact is the limited number of opportunities for choosing
an alternative schedule. In particular, there are six possible mappings for a
four-program workload on two big and two small cores: BBSS, SSBB, BSBS,

SBSB, BSSB and SBBS; where a B and S represents the respective application
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running on the big versus small core, respectively. One of these schedules is
the performance-optimized schedule. The scheduler has limited opportunity
to choose a schedule other than the one that optimizes performance while
remaining within 2% of the performance-optimal schedule. However, it may
still successfully pick such a schedule in very few cases.

Increasing the performance constraint provides more flexibility to the sched-
uler and the improvement in reliability is also higher. In particular, the average
gain in SSER for a performance constraint of 5% and 10% equals 13.5% and
23.5%, respectively. Note that performance is still better than the random
scheduler for these performance levels. As the limit is further increased, the
scheduler starts to choose schedules that are more similar to the ones chosen by
the reliability-optimized scheduler. For the 20% and 50% performance limits,
the numbers are very close to the reliability-optimized scheduler — an average
improvement in reliability of 32% at the cost of a 1% performance degradation
compared to the random scheduler. Overall, we conclude that the improvement
in reliability is always much higher than the degradation in performance. The
higher the allowable performance degradation, the higher is the improvement
in reliability; the actual performance constraint, however, can be adjusted by
the system administrator or end user based on the requirements.

3.9 Multi-Threaded Workloads

So far, we considered multiprogram workloads composed out of single-
threaded programs, for which we observed the highest improvements in re-
liability for workload mixes consisting of diverse applications, i.e., high-AVF
applications running concurrently with low-AVF applications; the smallest im-
provements are observed for workload mixes composed out of applications with
similar AVF characteristics. We now consider multi-threaded workloads. Most
multi-threaded workloads are data-parallel in which all threads execute the
same code on different portions of the data. As a result, all threads exhibit simi-
lar execution behavior. We refer to these workloads as homogeneous workloads.
Some multi-threaded workloads however expose pipelined parallelism, i.e., the
outcome produced by one thread is the input for another thread. These work-
loads are heterogeneous, i.e., different threads execute different code. Based
on the results obtained for the multi-program workloads, we expect limited
improvement for the multithreaded workloads that are homogeneous, but we
expect a higher improvement for the heterogeneous workloads.

3.9.1 Metrics

For multiprogram workloads, the necessity for metrics such as STP for
performance and SSER for reliability arises from the fact that co-executing
programs affect each other’s performance. However, for multithreaded work-
loads, execution time or start-to-finish time correctly measures performance,
i.e., this is the time it takes to get a unit of work done. Similarly, since the
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amount of work performed by a multi-threaded program is fixed, SER is an
appropriate metric to quantify the vulnerability of a multi-threaded program
to soft errors. ABC of a multithreaded program is the sum of the ABC values
for all threads. Once we know the overall ABC, SER can be calculated as
described in Section 2.3.

3.9.2 Performance-Optimized Scheduling

Identifying bottlenecks and improving performance of multithreaded work-
loads on multicore hardware is a challenging task, especially on heterogeneous
multicore processors, and a number of prior works have focused on this prob-
lem, see for example [20, 55, 94]. The challenge when executing multi-threaded
workloads on multicore hardware is to make sure that all threads make equal
progress, i.e., all threads need to reach the end of the execution or the next
barrier at roughly the same time, or in other words, the execution needs to be
balanced. This may be complicated because of negative interference in shared
resources, e.g., one thread may evict another thread’s data from the shared
cache. Heterogeneous multicore processors further complicate this, i.e., the
thread(s) running on the big core(s) make much faster progress than the one(s)
running on the small core(s). One solution is to make sure all threads get
an equal share of the big core cycles, i.e., by allowing all threads to run on
a big core alternately. This leads to a balanced execution, improving overall
application performance. This is typically a viable solution for homogeneous
multi-threaded workloads, however, heterogeneous workloads need a more in-
volved solution, i.e., we need to make sure all threads make equal progress,
as described by Van Craeynest et al. [208]. There is a subtle but important
difference between equal share and equal progress. Equal share guarantees the
same number of big core cycles for all threads; equal progress on the other hand
guarantees that all threads benefit equally from running on the big cores, e.g.,
if one thread benefits twice as much from running on the big core, it will re-
ceive only half as many cycles. Equal progress enables balanced execution even
for heterogeneous multi-threaded workloads. Van Craeynest et al. [208] find
that equal-progress scheduling is the best performing performance-optimized
scheduler, which we adopt accordingly in this section.

3.9.3 Results

For our evaluation, we compare the reliability- and performance-optimized
schedulers on an HCMP with two big and two small cores (2B2S). The two
schedulers minimize SER and total execution time, respectively. We also com-
pare against a random scheduler that randomly selects threads to run on the
big cores.
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Table 3.4: Multithreaded benchmarks from PARSEC and Rodinia.

Suite Benchmark Input size

Rodinia

backprop
bfs
cfd
hotspot
kmeans
srad

large
large
large
large
large
large

PARSEC

bodytrack
canneal
dedup
ferret
fluidanimate
swaptions

large
large
medium
medium
large
large

3.9.3.1 Methodology

We need to consider a few subtle changes in the experimental methodology
for the multi-threaded workloads in comparison to the multiprogram workloads.
The scheduling quantum can be fixed for the multiprogram workloads (e.g.,
1 ms). However, this is not appropriate for multi-threaded programs for which
the number of running threads may vary dynamically at runtime because of
sequential code sections and synchronization activity. Therefore, a scheduler
should only take into account the threads performing useful work. When the
number of active threads does not change during the course of a 1 ms time
interval, we fix the scheduling quantum to 1 ms. In addition, a quantum starts
(or ends) when a thread changes from running to waiting and vice versa. In such
cases, the size of a quantum will be less than 1 ms. This flexibility in quantum
size is required to consider all running threads for scheduling. Sampling is
performed in a manner similar to what is done for the multiprogram workloads
— when a thread continues to run for ten consecutive quanta on one core type,
we trigger the sampling phase for a period of 0.1 ms.

Another difference is that the number of active threads at runtime can be
less than the number of cores available in an HCMP. This may lead to certain
cores remaining idle for some time during program execution. When there is
a possibility of a core remaining idle during a scheduler quantum, we utilize
as many big cores as possible to take advantage of their high performance.
For example, in a 2B2S system, if there are only three active threads during a
quantum, the two big cores will always be running two threads and one small
core will run the third thread leading to one small core remaining idle.

We use benchmarks from the Rodinia [38] and PARSEC [21] suites to eval-
uate our reliability-aware scheduler for multithreaded workloads, see Table 3.4.
We simulate the benchmarks that we were able to successfully run on our simu-
lator. We consider the parallel portion of the benchmarks in the evaluation; the
sequential phases are run on the big core for highest performance. All bench-
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Figure 3.17: Reliability (a) and performance (b) for the Rodinia benchmarks
on a 2B2S system.

marks except for ferret were executed on a 2B2S system. ferret requires at
least six threads (cores) for execution and therefore we simulate six threads for
ferret on an HCMP with three big and three small cores (3B3S).

3.9.3.2 Rodinia

Figure 3.17 shows reliability and performance for the Rodinia bench-
marks for reliability-aware scheduling compared to random and performance-
optimized scheduling. The highest improvement in soft error rate compared
to both random and performance-optimized scheduling is achieved for bfs

(10%), followed by kmeans (8.8%). The improvement is less significant for
the other benchmarks. Looking at performance, we observe that reliability-
aware scheduling is either performance neutral or degrades performance. We
note a one-to-one trade-off between reliability and performance for most bench-
marks. For example, for bfs, reliability-aware scheduling improves reliability
by 10% while at the same time degrading performance by 10%. The reason
is that the Rodinia benchmarks are homogeneous data-parallel workloads, and
hence there is limited opportunity to improve reliability, as expected and argued
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Figure 3.18: Reliability (a) and performance (b) for the PARSEC
benchmarks.

above. The data-parallel nature of the workloads is also the reason for similar
performance between the random and performance-optimized scheduling.

3.9.3.3 PARSEC

Figure 3.18 shows the results for the PARSEC benchmarks. Two of the
PARSEC benchmarks are heterogeneous workloads, namely ferret and dedup;
all other benchmarks are homogeneous data-parallel workloads. We observe
similar results for the homogeneous PARSEC benchmarks as for the Rodinia
benchmarks: the improvement in reliability through reliability-aware schedul-
ing leads to an almost equally high degradation in performance (and both
are small). For one of the heterogeneous workloads, namely ferret, we do
observe an interesting result: the improvement in reliability (11%) is higher
than the degradation in performance (7%), which is in line with the results
and conclusion obtained for the multiprogram workloads. Unfortunately, we
do not observe a similar result for dedup, the other heterogeneous benchmark.
Through detailed analysis using bottle graphs [56] of dedup’s execution behav-
ior, we observe that there is a very high degree of parallel imbalance among the



3.10. INCORPORATING UNPROTECTED L1 CACHES 61

threads. One critical thread runs for a longer time than all other threads put
together. This leads to the other non-critical threads remaining idle for most
of the execution. Since our scheduling policy never leaves a big core idle, the
critical thread is always running on the big core for all three schedulers, thus
leading to similar reliability and performance figures for all of them.

The overarching conclusion from this section is that reliability-aware
scheduling has limited benefit for multi-threaded workloads. The primary rea-
son is that different threads typically execute the same code and hence there is
limited opportunity to exploit diversity in AVF characteristics across the differ-
ent threads. We typically observe a one-to-one trade-off between reliability and
performance. Only in a limited number of cases, i.e., heterogeneous workloads
with different threads that execute different code and that exhibit different
AVF characteristics, do we observe an opportunity to improve reliability at the
expense of a relatively small performance degradation.

3.10 Incorporating Unprotected L1 Caches

Protection techniques based on Error Detecting Codes (EDC) and Error
Correcting Codes (ECC) incur chip area, power and possibly latency overheads,
and are typically applied to the cache levels beyond the L1 caches [189]. Several
prior works estimate and mitigate soft errors of on-chip caches in general, and
L1 caches in particular, see for example [12, 22, 24, 135, 189, 213]. Recent
work also focuses on dynamically reconfiguring last-level caches and improving
reliability across the cache hierarchy in the presence of multibit soft errors [110,
111, 197]. Reliability-aware scheduling as proposed in this chapter works for
the case in which the L1 caches are protected (which is what we assumed so
far) as well as for the case in which the L1 caches are not protected (which
is the subject of this section). In order for reliability-aware scheduling to be
able to incorporate L1 cache soft error vulnerability, we need to also estimate
and measure L1 cache soft error vulnerability. In this section, we first explain
our methodology to dynamically compute the ABC for the L1 caches and then
evaluate how well reliability-aware scheduling performs taking into account
reliability of the core and the L1 caches.

3.10.1 Estimating Cache Soft Error Vulnerability

Our methodology for calculating ACE Bit Count in the data and tag arrays
is based on the work done by Biswas et al. [22]. A cacheline is ACE if its
correctness is required for the correct execution of a program. (Note we assume
both the L1 D-cache and L1 I-cache to be write-back caches.) For the data
array, ABC can be estimated as follows. There are four time intervals during
which a cacheline is ACE: fill-to-read, read-to-read, write-to-read and write-to-
evict. For the tag array, the correctness of a program is affected only by the
false-positive case, when an incorrect cacheline is returned due to an error in the
tag bits. Therefore, to estimate ABC in this case, we implement the hamming-
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distance-one analysis and conservatively assume that all (tag) entries of a set are
at a hamming-distance of 1 from the tag bits of the requested memory address.
According to hamming-distance-one analysis, wrong data will be returned to
the core when there is a difference of only a single bit between the incoming
address and the tag bits of a cacheline, and this particular tag bit flips due to
soft error, causing a cache hit. Therefore, such a tag array bit must be ACE for
each cacheline in a set; the maximum number of such bits for a set is equal to
the associativity of the cache. For example, each tag array access contributes
8 ACE bits for the 8-way set-associative L1 D-cache with one cycle tag access
time in our setup.

3.10.2 Hardware Overhead

The hardware cost for computing ABC for the L1 caches is limited. There
are 512 64 B cachelines in a 32 KB L1 cache. Assuming a quantum size of 1 ms,
this amounts to 375,940 cycles when running at 2.66 GHz. This is also the
maximum number of cycles a cacheline can be ACE. Accounting for this many
cycles requires 18.5 bits; we assume 20 bits per cacheline. For each cacheline,
we keep track of the last access time. This amounts to 20 bits per cacheline
ABC counter, or a total of 1280 bytes.

Whenever a cacheline is read/written/evicted, we update one global cache-
wide ABC counter. In the ‘worst’ case, the entire cache can be ACE for one
quantum, which implies that this cache-wide ABC counter requires 36 bits.
When a cacheline is read or evicted, we add the difference between the current
cycle count (since the beginning of the scheduling quantum) and the cacheline
ABC counter to the global counter, and we replace the cache ABC counter
value with the current cycle count upon a read, eviction and write. A 36-bit
adder is equivalent to 250 bits, similar to what is described in Section 3.4. The
addition of ABC counters across quanta can be done in software. The overall
hardware cost for an L1 cache amounts to 1314 bytes.

3.10.3 Impact of Caches on Soft Error Vulnerability

The impact L1 caches have on soft error vulnerability is quantified in Fig-
ure 3.19: cache-AVF and total-AVF (that is, AVF for the core and the L1
caches; total-ABC is defined similarly) are shown for the SPEC CPU2006
benchmarks; the benchmarks are sorted in the same order as in Figure 3.1.
(Note that the reported AVF values are much smaller in Figure 3.19 compared
to Figure 3.1; this is because the L1 caches are now included in the total struc-
ture size.) It is clear from the figure that there is a strong correlation between
total-AVF and cache-AVF. This is primarily because total-ABC is dominated
by the L1 caches. The size of, or more precisely the architecture state contained
in, the L1 caches is ten times higher than the out-of-order core — 64 KB versus
almost 6 KB. In spite of the strong correlation between cache-AVF and total-
AVF, we observe that the gap between both curves widens going from left to
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Figure 3.19: Cache-AVF and total-AVF for the SPEC CPU2006 benchmarks
on a big out-of-order core.

right in Figure 3.19. This is because the benchmarks on the right-hand side of
the graph have higher core-AVF, as previously reported.

3.10.4 Results

Figure 3.20 shows results for reliability-aware scheduling when ABC for the
L1 caches is also taken into account. That is, total-ABC is used in Algorithm 1
as well as in Equation 3.3 for estimating SSER. We evaluate three cases while
varying the size of the L1 caches for the small core. In the first case, the L1
caches for both the big and small cores are equal in size. In the other two cases,
we reduce the size of the L1 caches for the small core by a factor of 2 and 4,
respectively. When the L1 cache size is equal between the big and small core,
the impact on reliability and performance is small. The reason is twofold: (i)
the total amount of vulnerable state is dominated by the L1 caches, as described
above, and (ii) execution time on the small core takes longer and as a result
cachelines get exposed to soft errors for a longer duration, further narrowing
the difference in vulnerable state between the big and small cores. Reducing
the size of the L1 caches in the small core, the difference in vulnerable state
increases between the big and small cores, which leads to significant average
improvements in SSER by 5% and 11% for half the cache size and a quarter the
cache size for the small cores, respectively. Note that performance is largely
unaffected compared to random scheduling. These results demonstrate that
reliability-aware scheduling is beneficial even if the L1 caches are unprotected
and need to be taken into account as part of the scheduling policy. In addition,
reliability-aware scheduling is more effective as cache size differs between the
big and small cores.
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Figure 3.20: SSER (a) and STP (b) of four-program workloads on a 2B2S
system with decreasing L1 cache size for the small cores.

3.11 Related Work

We now discuss related work in processor reliability, as well as recent work
in scheduling for HCMPs.

3.11.1 Monitoring, Modeling and Improving
Reliability

Processor reliability is a growing concern, and a significant body of prior
work targets decreasing the occurrence of soft errors, either through radiation-
hardened circuit design [30], error detection and correction mechanisms [153],
or architectural techniques [190, 214]. Our scheduling technique is orthogonal
to these approaches, and provides additional reliability improvements.

Other researchers have studied monitoring and modeling reliability for
processor design (e.g., where to add error detection) and online reliability es-
timation (e.g., to find out when to enable an architectural error reduction
technique that may also incur a performance hit). One way to evaluate soft er-
ror reliability is through fault injection, and to monitor what fraction of faults
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lead to incorrect program executions [120]. Mukherjee et al. [137] propose
ACE bit analysis as an alternative to fault injection to evaluate the reliabil-
ity in architecture studies. They also introduce the concept of AVF. Biswas
et al. [22] show how to measure AVF for address-based structures. Sridha-
ran and Kaeli [191] propose to split AVF into PVF (program vulnerability
factor) and HVF (hardware vulnerability factor), which can be determined in-
dependently. Other prior work models AVF through regression on performance
counters [121, 210], or through analytical mechanistic modeling [145]. Nair et
al. [144] develop a methodology for creating AVF-stressing benchmarks, pro-
viding a processor AVF upper bound.

No prior work has studied reliability characteristics of HCMPs, or has con-
sidered HCMP scheduling as a way to improve reliability. This dissertation
is also the first to propose a system-level reliability metric for multiprogram
workloads.

3.11.2 Scheduling Heterogeneous Multicores

Kumar et al. [112, 113] advocate single-ISA heterogeneous multicores to
improve energy and power efficiency. Many proposals advocate scheduling
compute-intensive applications on the big cores, because they show the highest
performance improvement [39, 109, 179]. Van Craeynest et al. [207] show that
memory-intensive applications can also show important performance gains on
big cores if they are able to exploit more memory-level parallelism. Other pro-
posals focus on optimizing energy efficiency [124] or power efficiency [138, 221].
This dissertation is the first to improve reliability on HCMPs through schedul-
ing.

3.12 Summary

Applications exhibit different soft error reliability characteristics on big,
out-of-order cores versus small, in-order cores. This provides considerable op-
portunity to improve system reliability through scheduling on HCMPs. An
oracle offline analysis considering an HCMP with 2 small and 2 big cores shows
that reliability-aware scheduling improves system reliability by 27.2% on aver-
age and up to 62.8%, while degrading performance by at little as 7% on average
compared to performance-optimized scheduling.

In this chapter, we propose a reliability-aware scheduler that samples the
reliability characteristics of running applications on either core type, and dy-
namically schedules applications on big versus small cores to improve overall
system reliability. We propose a novel system-level reliability metric, system
soft error rate (SSER), that weights per-application SER with its relative slow-
down to account for the difference between small and big core performance.
The proposed scheduler leverages a low-overhead (296 bytes per core) counter
architecture to track hardware occupancy.
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Reliability-aware scheduling improves system reliability by 25.4% on av-
erage and up to 60.2% compared to performance-optimized scheduling, while
degrading performance by 6.3% only. The proposed scheduler is robust across
core count, number of big versus small cores, and frequency settings. More-
over, as a side effect, reliability-aware scheduling reduces power consumption
by 6.2% on average compared to performance-optimized scheduling. We also
evaluate a power-optimized scheduler, in addition to the performance- and
reliability-optimized schedulers. Compared to a random scheduler, optimizing
for power leads to a degradation in performance and an improvement in relia-
bility. For applications that cannot tolerate performance degradation below a
certain threshold, we achieve the best system-level reliability within the thresh-
old, and as the performance threshold is relaxed, the improvement in reliability
also increases. Multithreaded workloads, due to their data-parallel nature, do
not experience large improvements in reliability relative to the degradation in
their performance. The vulnerable state in the on-chip L1 caches is almost 10×
more than the out-of-order core. Consequently, L1 caches dictate the improve-
ment in reliability when ACE bits exposed by L1 caches are included as part
of the reliability-aware scheduling policy.



Chapter 4

Dispatch Halting

Processor performance has increased exponentially over the years not only
due to the continuous technology scaling but also because of the microarchitec-
tural enhancements to extract more parallelism from application. To increase
the degree of instruction-level parallelism (ILP), the core microarchitecture
structures have increased in size with every technology generation. For exam-
ple, the reorder buffer (ROB) and issue queue have increased from 128 and 36
entries in Intel’s 2008 Nehalem microarchitecture (45 nm technology node), to
224 and 97 entries in the current Skylake microarchitecture (14 nm technology
node), respectively [54, 90]. Larger structures contain more architectural state
and therefore increase the vulnerability to soft errors. The memory-intensive
workloads further exacerbate the soft error vulnerability of the core microar-
chitecture because a memory access typically stalls the processor for (at least)
a couple hundreds of processor cycles. In particular, the processor back-end is
occupied by a large microarchitectural state for a long time window after a long-
latency load miss. Therefore, devising techniques that reduce the vulnerability
to soft errors for memory-intensive workloads is thus of critical importance.
Needless to say that such techniques should incur marginal overhead in terms
of performance, power and chip area.

In this chapter, we propose dispatch halting, a microarchitectural technique
to minimize soft error vulnerability in out-of-order processors. Dispatch halting
stalls dispatch from the pipeline front-end into the back-end after a long-latency
load miss to prevent instructions following the load from allocating back-end
resources. These subsequent instructions are buffered temporarily in an ex-
tended micro-op queue (EMQ). Dispatch is resumed when the long-latency
load is about to return. We consider two variants, proactive and reactive
dispatch halting. Proactive dispatch halting predicts the load miss and, to
preserve performance on par with a conventional out-of-order core, selectively
copies loads and branches, along with their producer instructions, from the
EMQ to the back-end for speculative pre-execution to expose memory-level
parallelism (MLP) and resolve mispredicted branches that are independent of
the long-latency load. In reactive dispatch halting, dispatch is halted when
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time
decode rename/dispatch issue execute commit

register file

load/store queue

issue queue functional unit

reorder buffer

micro-op queue

Figure 4.1: Timeline representing when entries allocated in back-end resources
are ACE for committed instructions in a superscalar out-of-order core.

a long-latency load miss blocks commit at the ROB head for a given number
of cycles. The instructions in the ROB turn into speculative execution mode
to preserve MLP, and are flushed when the load is about to return. When
exiting dispatch halting, the instructions buffered in the EMQ are dispatched
into the back-end for normal execution. Overall, dispatch halting reduces the
amount of vulnerable state upon long-latency load misses by holding instruc-
tions in a smaller structure while preserving out-of-order performance through
(invulnerable) speculation.

Section 4.1 characterizes the vulnerability of an instruction as it occupies
resources within different microarchitectural structures. Section 4.2 quantifies
the vulnerability, calculated as ABC, for all benchmarks, and demonstrates that
memory-intensive benchmarks are highly vulnerable to soft errors; it quantifies
the potential for improving reliability and motivates our work on dispatch halt-
ing. Section 4.3 details the working of proactive dispatch halting on a pipeline
in a stage-by-stage fashion. Section 4.4 explains reactive dispatch halting,
which marks the processor back-end as speculative after a long-latency load
instruction blocks commit for a certain number of cycles. The methodology is
explained in Section 4.5, followed by the results in Section 4.6. We elaborate
on the related work in Section 4.7 and summarize the chapter in Section 4.8.

4.1 OoO Core Soft Error Vulnerability

In an OoO core, instructions are fetched, decoded, and stored in a buffer
called the micro-op queue (MQ) [201]. From the micro-op queue, the instruc-
tions are delivered to the back-end for execution. The process of sending in-
structions from the micro-op queue to the back-end of an OoO processor is
known as dispatch. An instruction can only be dispatched to the back-end
when there are enough back-end resources available to hold the instruction in
the issue queue (IQ) and reorder buffer (ROB). A memory access instruction
also allocates an entry in the load queue (LQ) or store queue (SQ). When an
instruction’s operands are ready and a functional unit (FU) is available, the
instruction is issued: the instruction is removed from the IQ and executed on
the FU. Once the instruction finishes its execution, its result is stored in the
physical register file (RF), dependent instructions in the IQ are woken up and
the reorder buffer is updated to reflect that the instruction is ready to commit.
An instruction is committed when all instructions before it in program order
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Figure 4.2: ABC stacks for an out-of-order core. Memory-intensive workloads
(on the right-hand side) lead to high ABC because of high occupancy in ROB,
IQ, LQ and RF.

have been committed. Upon commit, all back-end resources allocated to an
instruction are released.

Figure 4.1 shows the duration when entries in back-end structures are ACE
for correct-path instructions. For a correct-path instruction, all ACE bits ex-
posed during the execution through an OoO core must be intact. Therefore,
all the entries allocated for correct-path instructions in the micro-op queue,
issue queue, ROB, register file and load/store queue must be correct from al-
location to release. We therefore consider the time from dispatch to commit
as ACE for the ROB entries. The address and data values in the load/store
queue are considered ACE between issue and commit. An issue queue entry
is considered ACE from dispatch to issue. Architecture registers are assumed
ACE throughout the entire execution; a physical register is considered ACE
between execute and commit, assuming a physical register transitions into an
architecture register upon commit. The number of ACE bits exposed during
execution on a functional unit is the bit width of the unit times the number of
execution cycles per instruction.

4.2 Potential for Reducing Vulnerability

Soft error vulnerability is a function of the interaction between the applica-
tion and the core’s microarchitecture, i.e., the number of ACE bits (or ABC)
on a particular microarchitecture depends on the application’s execution char-
acteristics. Figure 4.2 shows the ABC stacks for 1 B instruction traces for the
SPEC CPU2006 benchmarks on an OoO core; the benchmarks are sorted from
left to right by the number of last-level cache (LLC) misses per thousand in-
structions (MPKI), hence, memory-intensive benchmarks appear on the right
hand side in the graph. (See Section 4.5 for our experimental setup.) An
ABC stack breaks down the ABC of a core into its different microarchitectural
structures. The higher ABC, the higher the total number of errors an appli-
cation encounters. One important point to deduce from this figure is that the
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memory-intensive applications lead to large occupancy inside the core. This
is particularly the case for the reorder buffer, but also the issue queue, load
queue and register file. As a result, the total number of errors encountered
by memory-intensive applications is higher than for compute-intensive appli-
cations.

Figure 4.3 helps us understand the reason behind the high number of soft
errors encountered by the memory-intensive applications. The ‘OoO core’ bars
in Figure 4.3 are identical to the top height of the ABC stacks in Figure 4.2.
Memory accesses as a result of LLC load misses frequently lead to full-ROB
stalls, i.e., when a load miss blocks commit, new instructions are dispatched
into the ROB until the ROB fills up, at which point new instructions can no
longer be dispatched. To assess the impact of full-ROB stalls on reliability,
we perform the following experiment. When a load instruction that misses in
the LLC causes a full-ROB stall, we start counting ACE bits exposed in all
structures of the pipeline by all in-flight instructions. When the load returns,
we sum up the ACE bits exposed in all structures, and stop the counters. This
is the reliability overhead caused by the LLC miss between the full-ROB stall
and the return of the memory access. We repeat this process for every LLC
load miss that results in a full-ROB stall. When we add the number of ACE
bits exposed by all such loads, we obtain the reliability overhead caused by all
full-ROB stalls. This reliability overhead is represented by the ‘full-ROB stall’
bar in Figure 4.3. Clearly, full-ROB stalls are responsible for a good fraction
of soft errors encountered by the memory-intensive applications. For example,
for benchmarks such as omnetpp and libquantum, more than 60% of the ACE
bits are exposed during full-ROB stalls due to memory accesses. However, for
applications such as gcc and mcf, full-ROB stalls lead to only 20% of the ACE
bits. A large percentage of ACE bits in these applications are not exposed
during the full-ROB stalls.

To understand the gap in reliability between full-ROB stalls and normal
OoO execution, we perform another (but similar) experiment. When an LLC
load miss reaches the head of the ROB and blocks commit, we start counting
ACE bits exposed in all pipeline structures by all in-flight instructions. Unlike
the previous experiment, we start counting ACE bits as soon as the LLC load
miss blocks commit — we do not wait for the ROB to fill up as in the previous
experiment. When the LLC load miss returns, we sum the ACE bits exposed
in all structures, and stop the counters. This is the reliability overhead caused
by the load instruction between blocking and unblocking commit. We repeat
this process for every LLC load miss that blocks the ROB head. When we add
the number of ACE bits exposed by all such loads, we obtain the reliability
overhead caused by all memory accesses between ROB blocking and unblock-
ing. This reliability overhead is represented by the ‘ROB head blocked’ bar in
Figure 4.3. Obviously, the ACE bits exposed in this experiment also include
the ACE bits exposed during full-ROB stalls, as a number of LLC load misses
will result in full-ROB stalls. From Figure 4.3, we observe that most ACE bits
for all memory-intensive benchmarks, including gcc and mcf, are exposed when
the ROB head is blocked by LLC load misses (by 67% on average, and up to
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87%). The fine subtlety between the two experiments is important for exploit-
ing the full potential for improving reliability. A load instruction that blocks
the head of the ROB may not necessarily lead to a full-ROB stall. However, a
large number of ACE bits are still exposed to soft errors. We encounter such
situations when an LLC miss is followed by a branch misprediction, front-end
miss or a full issue queue. Benchmarks such as gcc and mcf have a large num-
ber of branch mispredictions in the shadow of long-latency load misses [145];
lbm is stalled on a full issue queue for about 20% of the time; soplex and
astar also encounter branch mispredictions and some other resource stalls in
the pipeline [147].

Therefore, to minimize the vulnerable microarchitecture state while a mem-
ory access is serviced, it is crucial to devise a mechanism that reacts as soon
as an LLC load miss reaches the head of the ROB. However, it may take a
couple tens of cycles (if not more) before an LLC load miss is detected and is
the oldest instruction in the ROB. In the meantime, instructions fetched after
the LLC load miss may have allocated OoO core back-end resources. We thus
need a mechanism that acts much sooner, as soon as the LLC load miss blocks
commit, or even sooner, as soon as the LLC load miss is dispatched. Ideally,
we would only allow the LLC load miss to occupy back-end structures and pre-
vent subsequent instructions from allocating OoO resources to minimize the
amount of vulnerable state. This requirement motivates our work on proactive
dispatch halting which we describe next. Alternatively, it is possible to mark
an LLC missing load instruction and the instructions following it as specula-
tive when the load instruction reaches the head of the ROB. A copy of these
instructions can be buffered in the front-end and replayed when the blocking
load instruction returns. Such a policy will re-execute all instructions beyond a
blocking load. Reacting to an LLC miss by buffering and replaying instructions
motivates our work on the reactive dispatch halting. Reactive dispatch halting
is discussed in detail in Section 4.4.

4.3 Proactive Dispatch Halting

Proactive dispatch halting (P-DH) halts dispatch after a predicted LLC load
miss and prevents subsequent instructions from allocating entries in the ROB,
issue queue, load/store queue and register file, thereby reducing the amount of
exposed vulnerable state. Obviously, we foresee countermeasures to preserve
OoO performance. P-DH requires modifications to the microarchitecture. We
add two new hardware structures between the decode stage and the dispatch
stage: a Load Miss Predictor (LMP) and a Producer Instruction Table (PIT).
The LMP predicts whether a load instruction will incur an LLC miss, which
will trigger halting dispatch. The PIT stores the addresses (PCs) of the in-
structions that a load or branch instruction depends upon through real register
dependences. The overall microarchitecture of the core is shown in Figure 4.4.
In this section, we explain the necessary hardware modifications required to
ensure the flow of instructions through the pipeline in a reliable manner while
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preserving OoO performance. As in a normal pipeline, instructions are fetched
and (pre-)decoded. The decoder stage breaks up instructions in micro-ops
which are then directed to a buffer called the Micro-op Queue (MQ).

4.3.1 Load Miss Prediction

A load instruction that misses in the LLC is most likely to also miss in
the LLC in the near future. We track load LLC misses and their hit/miss
history in hardware, and predict their future behavior using a Load Miss Pre-
dictor (LMP). The LMP in this work is a two-level predictor. Although other
load miss predictors have been proposed, see for example [161, 196], we find
a two-level predictor to be effective for our purpose. The first level, the Load
History Table (LHT), indexed using 8 bits from the load PC, maintains the
local hit/miss history of the past 8 instances of the load. The second level uses
these history bits from the LHT as an index to a table with two-bit saturating
counters. When a load instruction commits, its hit/miss status is updated in
the LMP. The LMP is accessed after the decode stage and dispatch is halted
when a load instruction is predicted to miss in the LLC. We refer to a load
instruction that halts dispatch as a halting load.

In addition to the LMP, we also implement a halting-load counter that
counts the number of halting loads that have passed the dispatch stage, i.e.,
the counter is incremented when a halting load is dispatched and is decremented
when normal dispatch is resumed. The processor remains in dispatch halting
mode as long as there is at least one halting load in-flight.

4.3.2 Halting Dispatch

Dispatching a halting load, i.e., a load instruction that is predicted to miss
in the LCC, engages dispatch halting. Instructions following the halting load
in the dynamic stream are buffered in the Extended Micro-op Queue (EMQ)
— the EMQ is described in the following section. The process of preventing
further instructions from being dispatched is known as a halt. Every halt has a
corresponding resume, when we resume dispatching instructions from the EMQ
into the back-end. We assume that dispatch can be halted at the granularity of
a processor cycle. Therefore, depending on the width of the processor pipeline,
all instructions selected for dispatch in a cycle are dispatched. If a halting load
is one of them, the dispatch is halted from the following cycle onward.

4.3.3 Extended Micro-op Queue Operation

The micro-op queue streamlines the flow of micro-ops between the front-end
and back-end of an OoO core by hiding potential bubbles created by different
sources of micro-op generation in the front-end. Intel’s core microarchitecture
also introduced a structure called the Loop Stream Detector (LSD) to store
small repeating loops from the micro-op queue. The micro-op queue is a circular
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FIFO buffer present in most contemporary microarchitectures. For example,
Intel’s Haswell and Skylake microarchitectures [54] have a micro-op queue of
28 and 64 entries, respectively.

We exploit this already existing structure by extending it to store more
instructions, and therefore call it the Extended Micro-op Queue (EMQ). When
a halting load is dispatched, and dispatch is halted, instructions start filling the
EMQ. Once the EMQ is full, the front-end stalls. The instructions that were
dispatched before the halting load execute and commit from the back-end of
the pipeline and the only instruction occupying the back-end structures is the
halting load, waiting for its data to return from memory. In a normal pipeline,
there is a large number of instructions in the back-end waiting to be issued or
committed, depending on the execution of their predecessors. When the data
is about to return from main memory, dispatch is resumed and the instructions
from the EMQ start allocating the out-of-order core back-end structures.

There are two performance issues with this (naive) proposal. First, a nor-
mal out-of-order core benefits from memory-level parallelism (MLP) by servic-
ing multiple independent memory accesses while a long-latency load blocks the
ROB head. Halting instructions beyond a halting load in the EMQ prevents the
processor from exploiting MLP, thereby significantly degrading performance.
Second, dispatch halting also delays branch resolution, which can also degrade
performance if there are mispredicted branches in the EMQ that are indepen-
dent of the long-latency load miss.

To maintain OoO performance, we propose to speculatively pre-execute
all loads and branch instructions and their backward slices beyond a halting
load, and resume normal execution when the long-latency load returns. More
specifically, instructions beyond a halting load are stored in the EMQ up until
the EMQ fills up. Loads and branches are copied to the back-end for speculative
pre-execution; this happens in program order as they are inserted in the EMQ.
In addition, we also copy the backward slices of the loads and branches to
the back-end. A backward slice contains all the instructions that produce a
register value that leads (directly or indirectly) to the load or branch. We keep
track of backward slices in a hardware table called the Producer Instruction
Table (PIT) as we describe in the next section. In other words, loads, branches
and instructions whose PCs appear in the PIT — these are backward slice
instructions — are copied to the back-end for speculative pre-execution. The
instructions are not copied non-consecutively from the EMQ to the back-end.
A micro-op is inserted in the EMQ after decode in program order. If it hits
in the PIT, or if it is a load or a branch micro-op, the micro-op is also sent
to the back-end. Note that speculatively pre-executed instructions in dispatch
halting mode do not allocate ROB entries, hence they are never committed.
Their purpose is only to improve MLP by generating prefetches and to resolve
independent mispredicted branches as early as possible. When normal dispatch
resumes, all instructions after the halting load are dispatched from the EMQ in
the ROB and back-end of the processor for normal (non-speculative) execution,
i.e., they are renamed, dispatched, issued, executed and committed in a typical
out-of-order fashion.
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Figure 4.5: PIT hit rate as a function of its size for the memory-intensive
benchmarks. A 256-entry PIT leads to an average 95.6% hit rate; a 1K-entry
PIT leads to a 99% hit rate for all benchmarks.

It is worth noting that the amount of MLP generated and the number of
resolved mispredicted branches when dispatch is halted depends on the size of
the EMQ. If the size of the EMQ is as big as the ROB, we expect the perfor-
mance of our reliability-aware microarchitecture to be close to a conventional
out-of-order core (as we will confirm in the results section). Note that in some
pathological cases, dispatch halting may lead to more MLP being exposed than
in a normal OoO core. Consider a load instruction that is predicted to be an
LLC hit, turns out to be an LLC miss. This load will block commit. Now,
assume that a load further down the instruction stream is a halting load. This
load will halt dispatch and will copy loads, branches and their backward slices
to the processor back-end for speculative execution. The amount of MLP that
can be exploited by the processor originates from the independent load misses
between the blocking load and the halting load, plus the independent load
misses in the EMQ beyond the halting load. Because the EMQ is assumed
to be the same size as the ROB in our baseline experimental setup, this may
lead to cases where the effective instruction window of in-flight instructions is
larger than the ROB. As a result, dispatch halting may expose more MLP than
a conventional OoO core, which leads to ultimately higher performance. We
will quantify this second-order effect in Section 4.6.

4.3.4 Computing Backward Slices

Computing the backward slices for loads and branches is done iteratively
across multiple executions of these instructions (e.g., across different iterations
of a loop) by relying on register renaming logic, similar to what is proposed by
Carlson et al. [33]. The instructions appearing in backward slices are kept track
of in the Producer Instruction Table (PIT). The Register Alias Table (RAT)1

1We use RAT to refer to front-end RAT; retirement RAT is only used in the reactive dispatch
halting proposed in Section 4.4.
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in an OoO core eliminates false register dependences by mapping Architectural
Registers (AR) to Physical Registers (PR). We extend each entry of the RAT
to also store the PC of the instruction that produces the latest value for a given
AR. An additional mark bit is set if the instruction that writes to that AR is a
load. When renaming an AR source register for a load or branch, the PC of the
producer instruction is available through the RAT. This producer PC is added
to the PIT unless the mark bit is set (in which case the producer instruction
itself is a load). When decoding a producer instruction (i.e., PC appears in
PIT) during the next execution of the instruction (e.g., next iteration of the
loop), the RAT entries for its source operands will also have the PCs of their
own producers. We then add these PCs to the PIT as well (again, unless
the mark bit is set). This process iteratively builds up the backward slices
for loads and branches across subsequent executions of these instructions, and
stops when the backward slice hits another load. The PCs of the instructions in
the backward slices are stored in the PIT. Over time, e.g., a couple iterations of
a loop, the PIT contains the PCs of the instructions along the load and branch
backward slices.

A key observation here is that the number of producer instructions is rela-
tively small. Figure 4.5 quantifies the PIT hit rate as a function of its size. A
256-entry fully-associative cache is sufficient to capture 95.6% of the backward
slice instructions for the memory-intensive workloads. For most applications,
a 256-entry PIT leads to a 99% hit rate.

4.3.5 Resuming Dispatch

When resuming normal dispatch, instructions buffered in the EMQ are dis-
patched to the back-end. This happens when the halting load is about to
return. Since memory access latency depends on several organizational param-
eters and run-time contention in the main memory subsystem, we do not know
in advance the number of cycles required by the halting load to complete the
memory access — average memory access time varies between 183 cycles (xalan)
and 331 cycles (mcf). We therefore compute the Average Memory Access Time
(AMAT) as a (simple) moving average across the last N LLC load misses (with
N = 64 in our experiments)2. When a halting load is dispatched, dispatch is
halted for a number of cycles equal to AMAT minus a constant proportional
to the number of cycles required to fill the ROB. In the absence of stalls when
dispatch can be maintained at the rate of the processor width, we assume that
40 cycles are sufficient to move all instructions from the EMQ to the ROB. For
example, if the current AMAT equals 200 cycles, we resume dispatch after 160
cycles.

It is possible that a load instruction labeled as a halting load actually hits
in the LLC, or L1/L2 caches. This leads to an incorrect halt, which likely hurts
performance. We therefore resume dispatch when the load/store unit detects a
tag hit at any of the cache levels. We squash the speculative instructions in the

2We rely on an efficient hardware implementation for computing a moving average.
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IQ, LQ and SQ. The performance penalty of an incorrect halt is the time to
access the cache tags at the different cache levels in a sequential manner, plus
the time to send the signal back to the dispatch stage to resume. We assume a
2-cycle penalty for resuming dispatch after a tag hit. Therefore, in case of an
L2 hit, the overall performance penalty will be the sum of the tag access times
for L1 and L2, plus 2 cycles.

4.3.6 Flush Semantics

The RAT is periodically checkpointed for a fast recovery from branch
mispredictions and exceptions. There can be several checkpoints main-
tained for quickly identifying and flushing wrong-path instructions from the
pipeline [3, 133, 172]. An identifier (typically ROB index) associates each in-
struction in the pipeline to a checkpoint. In dispatch halting, we also checkpoint
the RAT at every halt. Now, the RAT renames speculatively copied instruc-
tions; these instructions are then dispatched to the back-end for execution. As
described in Section 4.3.3, there can be a mispredicted branch in the EMQ.
In speculative mode, the checkpointing on a branch instruction is performed
in a typical out-of-order fashion. The only difference is that the checkpoint
holds the identifier of an instruction in the EMQ, instead of the ROB, and
the branch predictor tables are updated with speculative state. If a branch in-
struction that is independent of a halting load is mispredicted, all instructions
following the mispredicted branch instruction are squashed from the EMQ and
the other front-end structures, and the fetch unit is redirected to the correct
path. On a resume, the pipeline is restored to the checkpoint stored at the cor-
responding halt. Now, the execution continues in normal mode starting from
the first instruction in the EMQ.

4.3.7 Microarchitecture Complexity Analysis

The total chip area overhead for implementing dispatch halting is limited
to approximately 1.8 KB. Both tables of the LMP have 256 entries each, with
8 and 2 bits per entry for the first- and second-level tables, respectively, which
leads to a total size of 320 bytes. For the PIT, we store the 32 least-significant
bits from the address of the producer instructions, leading to a total size of 1 KB
for 256 entries. The RAT amounts to 512 bytes: we assume 64 architectural
registers and 8 bytes per RAT entry (9 bits for the physical register tag plus
PC information of the last producer).

We model the EMQ as a circular buffer with 4 read and 4 write ports. The
LMP is a two-level predictor with 2 read and 2 write ports, assuming at most
two loads per cycle. We model the PIT as a fully-associative cache assuming 2
search ports and 1 write port. (Two search ports are enough because we only
need a PIT access for producer instructions, which is a subset of the arithmetic
instructions; we add at most one producer to the PIT per cycle, hence one
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write port.) The RAT is modeled as an ECC-protected direct-mapped RAM
structure with 12 read and 4 write ports [133, 162].

Using CACTI 6.5 [119], we estimate cycle time for the EMQ, LMP, PIT
and RAT to be 0.216 ns, 0.179 ns, 0.362 ns, and 0.165 ns, respectively. This is
below the processor cycle time (0.376 ns), hence there is no impact on processor
timing.

We want to stress that none of the added structures are on the processor’s
critical path. If needed, accesses to the LMP and PIT can be pipelined. More-
over, we do not necessarily need to store the full PC per RAT entry. A few bits
may be sufficient to distinguish the 256 entries in the PIT. Furthermore, the
PIT is a predictive structure, hence we can tolerate some inaccuracy. Finally,
updating the PC information in the RAT is not on the critical path; it can
be spread out over multiple cycles if needed. The overall conclusion is that
dispatch halting does not affect a processor’s cycle time.

4.4 Reactive Dispatch Halting

P-DH, as described in the previous section, proactively halts dispatch after
a predicted long-latency load miss and speculatively executes only select future
instructions to generate MLP. P-DH’s effectiveness hinges on the accuracy of
the load miss predictor and incurs a modest hardware cost (i.e., LMP, PIT and
extensions to the RAT). We therefore consider an alternative design option,
namely reactive dispatch halting (R-DH), which halts dispatch when a long-
latency load miss is observed to block commit from the ROB for N cycles
(with N = 15 in our setup). R-DH has the advantage to be more precise than
P-DH in the sense that it targets all long-latency load misses, not just the ones
that are correctly predicted. Moreover, R-DH does not incur any hardware
cost. On the flip side, R-DH stalls dispatch relatively late — it is reactive —
and a number of instructions have been dispatched into the processor back-end
by the time dispatch is halted.

To address the latter issue and eliminate the amount of vulnerable state in
the back-end under R-DH, we employ the following mechanism. When the load
miss is observed to block commit for N cycles, we mark the processor back-
end as speculative, i.e., instructions already present in the ROB continue to
execute speculatively and generate MLP, however these instructions are never
committed; these instructions hence do not expose any vulnerable state. Note
that because we wait for the long-latency load to reach the ROB head and then
wait for another N cycles before stalling dispatch, the ROB is expected to be
partially (largely) filled with instructions, which enables the core to expose
significant MLP, comparable to normal out-of-order execution. Triggering a
pipeline flush when a long-latency load is detected, as proposed by Weaver et
al. [214], leads to a significant performance drop (by on average 12% according
to our experiments) because the core is unable to expose MLP.
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Dispatch halting ends and normal execution resumes by flushing the in-
structions in the ROB and re-dispatching (and thus re-executing) instructions
from the long-latency load. When to return to normal execution is determined
using the same AMAT-based mechanism as P-DH, see Section 4.3.5. In or-
der not to re-fetch and re-decode instructions after halting dispatch (to save
power), we keep track of the instructions from the long-latency load in the
EMQ. This requires a slightly different operation of the EMQ under R-DH
compared to P-DH. For P-DH, instructions leave the EMQ as soon as they are
dispatched. For R-DH on the other hand, we keep the instructions in the EMQ
until they are committed. The EMQ thus contains all instructions in the ROB
plus additional instructions that are yet to be dispatched. The circular EMQ
keeps track of the ROB head, the ROB tail (equals the EMQ head, i.e., next
instruction to dispatch) and the EMQ tail. Resuming normal dispatch is then
as simple as assigning the EMQ head pointer to point to the ROB head.

The flushing mechanism in R-DH also works differently from the P-DH. In
P-DH, we take a checkpoint at every halt, and the pipeline is restored to this
checkpoint upon resume. In R-DH, since we cannot know in advance whether
a load instruction will block the ROB head for a long duration, we cannot
precisely checkpoint the state of the front-end RAT. When the back-end is
marked as speculative, all the instructions in the ROB have already passed
the rename stage of the pipeline, and they have updated the front-end RAT.
For example, some of the branch instructions might insert a new checkpoint in
the front-end RAT for fast recovery from branch mispredictions. Checkpointing
upon every load instruction will incur a large overhead of maintaining the front-
end RAT in R-DH. Therefore, to restore the pipeline to the point where the
halting load is the next instruction to be dispatched, we copy the content of the
retirement RAT to the front-end RAT upon resume. Retirement RAT maps
each architectural register to a physical register that stores the committed value
of instructions older to the halting load. When the mappings of the front-end
and retirement RATs are same, the pipeline returns to the normal mode, and
the instructions starting from the halting load are dispatched again from the
EMQ to the back-end.

It is clear from the above discussion that R-DH presents a different trade-off
than P-DH. Through experimental evaluation (see Section 4.6), we find that
R-DH leads to higher reliability than P-DH because it targets all long-latency
load misses. Moreover, it does not incur the hardware cost for predicting
load misses and tracking backward slices for loads and branches. On the other
hand, R-DH incurs a modest power cost because of re-executing all instructions
from a long-latency load. In addition, R-DH also incurs a small performance
degradation because of not exposing as much as MLP as under P-DH.

4.5 Methodology

In this section, we provide the details of our experimental setup to evaluate
dispatch halting.
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Table 4.1: Simulated baseline OoO core configuration.

Frequency 2.66 GHz
Type out-of-order
ROB size 128, 120 bits/entry
Issue queue size 64, 80 bits/entry
Load queue size 64, 120 bits/entry
Store queue size 64, 184 bits/entry
Pipeline width 4
Pipeline depth 8 front-end stages
Functional units 3 int add (1 cyc)

1 int mult (3 cyc)
1 int div (18 cyc)
1 fp add (3 cyc)
1 fp mult (5 cyc)
1 fp div (6 cyc)

Register file 120 int (64 bit)
96 fp (128 bit)

EMQ 128 entry, 44 bits/entry, 4r, 4w
PIT 256 entry, fully assoc, 2r, 1w, 2s
LMP 2 × 256 entry, direct-mapped, 2r, 2w

L1 I-cache 32 KB, 4-way assoc, 2 cycles
L1 D-cache 32 KB, 8-way assoc, 4 cycles
Private L2 cache 256 KB, 8-way assoc, 8 cycles

Shared L3 cache 1 MB, 16-way assoc, 30 cycles

Memory DDR3-1600, 800 MHz, 7.6 GB/s
ranks: 4, banks: 32, page size: 4 KB
bus: 64 bits, tRP-tCL-tRCD: 11-11-11

4.5.1 Experimental Setup

We use the most accurate, hardware-validated core model in Sniper 6.0 [32].
We augment Sniper to compute ACE bit counts in the micro-op queue, re-
order buffer, issue queue, load/store queue, functional units and register file.
NOPs and wrong-path instructions are considered un-ACE. As discussed in Sec-
tion 4.1, we model a processor where physical register file entries are ACE from
execute to commit; architectural registers are ACE throughout the execution
of a program. We model a register file where a physical register transitions
into an architectural register upon commit. This is similar to merged regis-
ter file organization of the Intel Pentium 4, MIPS R12000 and Alpha 21264
processors [70, 86], where the same register file keeps speculative and (commit-
ted) architectural state of an application. There are two Register Alias Tables
(RAT), we call them front-end RAT and retirement RAT, for mapping archi-
tectural registers to physical registers. The ROB, issue queue and load/store
queue entries are allocated at dispatch. All occupied entries are freed at com-
mit. The detailed configuration of the simulated (baseline) out-of-order core is
provided in Table 4.1. We do not assume a hardware prefetcher in our base-
line setup, however, we evaluate the impact of hardware prefetching in the
evaluation.
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Table 4.2: Per-entry details for the various pipeline structures in our baseline
out-of-order core.

Structure Details Bits/entry

ROB PC index: 12 bits; mapping: arch(7),
phy(7), oldphy(7), 2 src, 1 dest, total = 21
× 3 = 63 bits; LQ and SQ index: 14 bits;
ld, st, int, fp completion status, exception
bits, marker bits; other control info

120

Issue queue 2 src, 1 dest reg tags: 21 bits; LQ and
SQ index for address generation: 14 bits;
micro-op: 32 bits; other control info

80

Load queue VA and PA for memory-ordering viola-
tions: 96 bits; ROB ID: 7 bits; SQ index:
7 bits; fault bits; other control info

120

Store queue Everything in load queue plus 64-bit data 184

EMQ PC index: 12 bits; micro-op: 32 bits 44

4.5.2 Microarchitecture State

To quantify the impact on reliability, we need to know the sizes of all the
structures in the core microarchitecture. We assume the sizes given in Table 4.2,
which provides a justified balance among the various pipeline structures. We
assume that the instruction fetch unit maintains a table that tracks all in-flight
instructions between fetch and commit. This table maintains the PCs of all in-
flight instructions, which incurs less hardware cost and state than propagating
PC information throughout the pipeline. PC information is needed to index the
branch predictor and to guarantee precise exceptions. Each ROB entry holds
a 12-bit index to this PC table. The micro-op queue also stores this index
and passes it to the ROB upon dispatch. The ROB also holds register tags
(7 bits each) for mapping, completion statuses for different instruction types,
exception bits, load/store queue index, and status/ready bits. We assume at
most two source registers and one destination register. An issue queue entry
holds opcodes, source and destination register tags, ROB ID, and load/store
queue tags for sending address information. The load queue needs virtual and
physical addresses (48 bits each) for handling TLB misses and memory ordering
violations, the corresponding ROB ID, and different fault bits. In addition to
the details required in the load queue, the store queue also stores data values
(64 bits).

Note that the amount of state needed per EMQ entry (44 bits) is much
smaller than the cumulative state per instruction once dispatched. An instruc-
tion that gets dispatched gets allocated an entry in the ROB (120 bits) and
issue queue (80 bits), and in case of a load or store instruction, an entry is also
allocated in the load queue (120 bits) or store queue (184 bits). In total, a
non-memory instruction in the back-end occupies 200 bits, a load instruction
occupies 320 bits and a store occupies 384 bits. The discrepancy between the
amount of state per EMQ entry (44 bits) versus an instruction in the back-
end (200–384 bits) is the primary reason why dispatch halting reduces the
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vulnerability to soft errors. We account for the vulnerable state in all the mi-
croarchitecture structures including the EMQ, ROB, IQ, RF, LQ and SQ. Note
also that we do not need to take the extra bits into account for the added hard-
ware structures (LMP and PIT) to support dispatch halting because dispatch
halting is a speculative technique. For the same reason, instructions executed
speculatively under dispatch halting do not incur vulnerable state either.

4.5.3 Workloads

We consider all 29 benchmarks from SPEC CPU2006 for which we create
representative 1B instruction SimPoints [180]. We report results for all bench-
marks but specifically focus on the memory-intensive benchmarks. We define
a workload to be memory-intensive if the number of LLC misses per kilo in-
structions (MPKI) exceeds 8. In all the graphs, the benchmarks are sorted by
increasing order of memory intensity, with astar and mcf being the least and
the most memory-intensive benchmarks, respectively, see Figure 4.3.

4.6 Results

We primarily focus on the memory-intensive workloads because that is
where dispatch halting is most beneficial; nevertheless, we also report the im-
pact on compute-intensive workloads. We use MTTF and IPC to quantify
reliability and performance, respectively. We compare the following three con-
figurations:

• OoO: Our baseline out-of-order core from Table 4.1.

• NO-SPEC: A naive solution to improve reliability is to simply halt dis-
patch upon a predicted long-latency load. Hence, there is no speculation
and no MLP gets exposed.

• ONLY-LOADS: When dispatch is halted proactively, only load instruc-
tions and their producers available in the PIT are passed on to the back-
end for speculative execution. Branch instructions and their producer
instructions are not copied to the back-end. Therefore, mispredicted
branches in the EMQ are not resolved.

• P-DH: Dispatch is halted proactively by predicting long-latency load
misses, after which load and branch instructions and their producers are
copied to the back-end for speculative execution.

• R-DH: Dispatch is halted reactively when a long-latency load blocks com-
mit for more thanN = 15 cycles. Instructions already in the ROB execute
speculatively and are flushed when returning to normal execution.
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Figure 4.6: Effect of dispatch halting on (a) reliability (MTTF) and (b)
performance (IPC). Dispatch halting significantly improves reliability while
maintaining performance compared to an OoO core.

4.6.1 Reliability and Performance

Figure 4.6 evaluates the impact of dispatch halting on reliability (MTTF)
and performance (IPC), normalized to the baseline out-of-order core. The key
take-away message is that dispatch halting significantly improves reliability
with a minor impact on performance, and R-DH improves reliability more
than P-DH while degrading performance only slightly. More specifically, R-
DH and P-DH improve reliability by on average 2.23× and 1.77×, respectively,
for the memory-intensive benchmarks, while degrading performance by 2.8%
and 1.3%. For the compute-intensive workloads, R-DH and P-DH improve
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reliability by 1.23× and 1.09×, respectively. As expected, the improvement in
reliability is much larger for the memory-intensive workloads, since dispatch
halting, by design, aims at reducing the architecture state vulnerable to soft
errors in the event of long-latency load misses. Across all benchmarks, R-DH
and P-DH improve reliability by 1.72× and 1.42×, respectively. The higher
improvement through R-DH compared to P-DH is because R-DH reduces the
vulnerable state upon all long-latency load misses, not only the ones that are
correctly predicted under P-DH.

Note that no-speculation is an unfavorable design point. Although reliabil-
ity improves by 1.85× on average for the memory-intensive benchmarks, this
comes at a cost of a performance hit by 34% on average. No-speculation mini-
mizes the amount of vulnerable state but does not expose any MLP which has
a detrimental impact on performance.

In the next two subsections, we analyze the impact on reliability and per-
formance in more detail.

4.6.2 Reliability Analysis

Dispatch halting significantly reduces the number of exposed ACE bits in
the OoO core back-end for memory-intensive workloads. We report substantial
MTTF improvements in the 2× to 4.5× range for libquantum, milc, gcc and
mcf, see Figure 4.6(a). libquantum and milc are benchmarks for which a load
instruction that blocks the head of the ROB frequently leads to a full-ROB
stall; this also explains why R-DH outperforms P-DH by a significant margin,
especially for libquantum. For mcf and gcc, it is crucial to not wait for the
full-ROB stall, but to halt immediately after dispatching a (predicted) long-
latency load instruction (see also Section 4.2). For lbm, which frequently blocks
on the issue queue before the ROB is full after an LLC miss, dispatch halting
improves MTTF by 1.57× (P-DH) and 1.78× (R-DH).

For the moderately memory-intensive workloads, see the benchmarks wrf

(second to the left) till omnet in Figure 4.6(a), the improvements in reliability
range between 1.4× to 2×. The astar benchmark (left-most benchmark) leads
to a modest reliability improvement of 1.2× under P-DH. Aliasing in the load
miss predictor for astar causes several load PCs to map to the same entry in
the first-level table, increasing the number of LMP mispredictions. Up to five
load instructions are mapped to the same LHT entry for astar and this leads
to incorrect halts when an LHT entry is shared by a load with a high LLC
miss probability and a load with a high LLC hit probability. As we describe in
Section 4.6.6, there is significant potential for improving reliability for astar

using a better load miss predictor. R-DH does not suffer from limited load miss
predictions and improves reliability by 2.28× for astar.
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4.6.3 Performance Analysis

Dispatch halting leads to an average IPC degradation of 0.9% (P-DH) and
1.6% (R-DH) compared to an out-of-order core across all benchmarks. The
degradation for R-DH is consistent across all benchmarks (and at most 7.8%)
because R-DH exploits less MLP. For P-DH, we observe some variability across
workloads, ranging from an improvement of 5.7% for libquantum to a degra-
dation of 11.2% for leslie. We now explore the impact of proactive dispatch
halting on performance in more detail.

P-DH may lead to a performance improvement in case of an LLC load miss
followed by a halting load, as described in Section 4.3.3. Assume we incor-
rectly predict the first load to be a hit. The instructions between these two
loads are in the ROB and commit blocks on the first LLC load miss. How-
ever, since dispatch is halted by the second load instruction, we start sending
loads, branches and their producers to the issue queue for speculative execution.
When the EMQ is full, the front-end pipeline stalls. This situation leads to a
situation in which the processor can exploit more parallelism in the memory
hierarchy than a normal OoO core can. A number of benchmarks experience
such an improvement, most notably sphinx3, libquantum, milc and soplex,
see Figure 4.6(b).

The proactive dispatch halting may also degrade performance for a couple
reasons. First, performance may degrade if we predict a load to be an LLC
miss which turns out to be a hit. The incurred penalty is the number of cycles
from dispatch to issue for the halting load, plus the number of cycles to detect
the cache hit. This is the case for a couple benchmarks including mcf, soplex
and xalancbmk. Second, when dispatch is halted, the number of speculatively
executed load instructions is limited by the size of the PIT. A load instruction
cannot execute speculatively if its producer(s) are not found in the PIT, thus
affecting performance. This is the primary reason for the degradation in IPC
for omnetpp (88% hit rate in the PIT, see also Figure 4.5). gcc, leslie3d and
xalancbmk also experience some performance degradation due to a larger set
of producer instructions than what the PIT can accommodate.

Both P-DH and R-DH resume dispatch based on the average memory ac-
cess latency (AMAT) as previously explained3. However, the effective memory
access latency varies depending on the amount of contention in the memory
subsystem. Whenever the effective memory access latency is smaller than the
average, dispatch halting may degrade performance. We find this to be the
case for primarily leslie3d, but also zeusmp, wrf and GemsFDTD in case of
P-DH.

3Using per-load average memory access latency did not have significant impact on our
results.
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Figure 4.7: Impact of dispatch halting on power consumption. P-DH and
R-DH increase system power by on average 2.7% and 6.2%, respectively.

4.6.4 Mispredicted Branches

Before halting the dispatch, the R-DH has already dispatched several in-
structions to the back-end. This not only helps in generating MLP but also
resolves mispredicted branches in the ROB. However, in proactive dispatch
halting, it is important to speculatively execute both loads and branches (and
their producer instructions) upon halting dispatch. Reliability is not affected by
whether branches are executed speculatively or not, see Figure 4.6(a). However,
we note a non-negligible performance degradation for a number of benchmarks
(by 3.6% on average for the memory-intensive benchmarks) if we do not execute
branches speculatively under halted dispatch, see Figure 4.6(b). Speculatively
executing branches allows the processor to resolve mispredicted branches ear-
lier (if they are independent of the outstanding load misses), which enables the
processor to re-direct fetch earlier towards the correct path. Speculatively exe-
cuting branches under P-DH improves performance by 7.8% for soplex, 6.4%
for milc and 5.7% for gcc; other benchmarks such as astar, zeusmp and mcf

also benefit from this optimization.

4.6.5 Power Consumption

Dispatch halting increases power consumption because (select) instructions
are executed twice upon a dispatch halt. These instructions are first executed
speculatively and then re-executed. The purpose of the speculative execution
is to expose MHP and resolve mispredicted branches. In addition, the extra
structures for P-DH, i.e., the PIT and LMP, also consume power. In this
section, we now quantify the increase in power consumption due to dispatch
halting. We use McPAT [118] and its integration with Sniper [82] to quantify
chip-level and total system power assuming a 22 nm chip technology. We model
the PIT and LMP to support P-DH, and we assume that the EMQ is part of
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the baseline OoO core. We estimate power (and chip area) for these three
structures using CACTI 6.5 [119] and add those numbers to the McPAT power
numbers. We do account for leakage power in all of these structures.

Figure 4.7 reports power consumption for dispatch halting relative to a base-
line OoO core. System power is broken up into different components including
core power (fetch, OoO, MMU and other), L1, L2, LLC and DRAM power.
P-DH increases total system power by 2.7% on average, and by 4.5% for the
memory-intensive workloads. The PIT and LMP’s contributions to total power
is small, less than 1%. The increase in power consumption is thus primarily a
result of the increased number of instructions executed. R-DH increases total
system power by 6.2% on average, and by 7.4% for the memory-intensive bench-
marks. This increase in power consumption is a result of executing instructions
twice upon a dispatch halt.

It is interesting to note that the 27% and 42% increase in executed instruc-
tions under P-DH and R-DH, respectively, leads to a relatively small increase
in power consumption of 4.5% and 7.4% in total system power for the memory-
intensive workloads. The fundamental reason is that the speculatively executed
instructions only increase activity in the back-end; they do not affect front-end
processor power consumption and they do not (significantly) affect power con-
sumption in the memory hierarchy. Instructions are fetched and decoded only
once and stored in the EMQ. In addition, speculatively executed loads trigger
prefetches from the next level in the memory hierarchy which would happen as
regular accesses in a conventional OoO core. The increase in processor activity
is a result of renaming, scheduling and executing the speculative instructions
twice.

4.6.6 Potential vs. Achieved Reliability

Recall that Figure 4.3 reports that the ACE Bit Count (ABC) of an OoO
core can be improved by 67% on average across the memory-intensive bench-
marks assuming that we withhold from allocating OoO back-end resources upon
an LLC load miss blocking commit. However, P-DH and R-DH improve ABC
by on average 41.2% and 50.4%, respectively. We now investigate this gap,
see also Figure 4.8. We identify three different intermediate (idealized) policies
between P-DH and the potential. If we were to know the per-load memory
access latency ahead of time and resume dispatch at that time (rather than
the average memory access latency) minus 40 cycles — this is the PER-LOAD
policy — we would be able to improve ABC by 46.1% on average. Resuming
dispatch at the time the LLC load miss effectively returns (and not 40 cycles
earlier) — this is the RETURN policy — improves ABC by 47.5%. Assuming a
perfect load miss predictor that identifies all LLC load misses at the dispatch
stage — this is the PERFECT-LMP policy — further improves ABC by 60%.
It is interesting to compare P-DH and the above policies against R-DH. This
analysis suggests that for most benchmarks, there is significant headroom to
improve P-DH beyond R-DH by improving the load miss predictor. For two
benchmarks, astar and libquantum, R-DH fundamentally outperforms P-DH
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Figure 4.8: Comparing achieved versus potential reliability improvement
through dispatch halting. P-DH and R-DH yield a 41.2% and 50.4% ABC
improvement, respectively, versus a potential 67% improvement.

because P-DH is unable to correctly predict load misses at dispatch time, i.e.,
a load that is anticipated to be a hit at dispatch time turns out to be a miss by
the time the load is executed, because of a cache eviction by another interven-
ing memory operation. Overall, we find that improving the load miss predictor
is the most promising lead to further improve reliability through proactive dis-
patch halting; we leave this for future work.

The remaining gap between the perfect load miss predictor and the full
potential is a result of second-order effects. In particular, a load that is antici-
pated to be a hit at dispatch time may turn out to be a miss by the time the
load is executed, because of an eviction by another memory operation. This
leaves some room for further improvement.

4.6.7 Runahead Execution

Runahead execution [57, 79, 80, 139, 141, 142] is a well-known technique
to exploit distant MLP beyond the ROB. The key idea is to enter speculative
execution when the ROB completely fills up because of a long-latency load miss
blocking commit at the ROB head. These speculatively executed instructions
prefetch data into the processor’s caches to speed up normal execution when
the initiating load miss returns. Although runahead execution was designed
to improve performance, it also improves reliability because the instructions
executed underneath a long-latency load miss are speculative.

We implement the enhanced runahead execution [141] which satisfies two
conditions: (1) there are no overlapping runahead intervals, and (2) runahead
execution is triggered only when the long-latency load blocking the head of the
ROB was issued to memory less than 250 cycles earlier. Figure 4.9 compares
runahead execution (RA) against dispatch halting in terms of reliability, per-
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Figure 4.9: Comparing performance, power, and reliability of runahead
execution versus dispatch halting for the memory-intensive benchmarks.
Runahead is less reliable than dispatch halting while consuming more power.

formance and power. Runahead execution improves performance by 12.4% on
average compared to conventional out-of-order execution, and by 13.5% and
15% compared to P-DH and R-DH, respectively. Yet, runahead is not a com-
pelling solution in terms of reliability. Reliability is not as good as R-DH and
P-DH, i.e., 1.48× improvement for the memory-intensive benchmarks versus
1.77× and 2.23×, respectively, while incurring 11.2% more system power than
an out-of-order core (compared to 4.5% and 7.4% for P-DH and R-DH, respec-
tively). The power cost for runahead is higher because (i) runahead executes
more instructions speculatively than R-DH, (ii) runahead executes all instruc-
tions speculatively whereas P-DH only executes load and branch slices, and
(iii) runahead re-fetches and re-decodes instructions whereas dispatch halting
keeps track of the speculatively executed instructions in the EMQ. The reli-
ability improvement is less because runahead execution (i) enters speculative
execution when the ROB completely fills up upon a long-latency load miss
blocking the ROB head (which is suboptimal, see also Section 4.2), and (ii)
runahead execution is not triggered for short runahead intervals to limit its
runtime overhead. For memory-intensive workloads, the ROB head is blocked
by a long-latency load for 73% of the time, while the processor is blocked on a
full ROB for only 35% of the time. In other words, the ROB head is blocked
while the ROB is not completely full for 38% (= 73% − 35%) of the time. Be-
cause runahead execution (and runahead buffer [79]) is only triggered upon a
full-ROB stall, this implies that runahead leaves significant opportunity on the
table. Dispatch halting on the other hand enters speculative execution proac-
tively (P-DH) or soon after the load miss blocks the ROB (R-DH), which leads
to much improved reliability.
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Figure 4.10: Normalized MTTF for dispatch halting relative to an OoO core
with hardware prefetching enabled. Dispatch halting significantly improves
reliability on an OoO core with hardware prefetching.

4.6.8 Sensitivity Analyses

We now perform a number of sensitivity analyses for proactive dispatch
halting with respect to hardware prefetching, EMQ size and multiprogram
workloads in a multicore setup.

Hardware Prefetching. We find dispatch halting to be effective even with a
hardware prefetching enabled processor, see Figure 4.10. We consider two hard-
ware prefetch scenarios: a (stream) prefetcher at the LLC versus a prefetcher
at all three cache levels. We observe an average performance improvement by
40.1% and 66.6% for our memory-intensive benchmarks, respectively. Com-
pared to an OoO core baseline with hardware prefetching, dispatch halting
improves reliability by 48% and 34.2% on average, respectively. Although
the improvement is less than for our baseline OoO core without prefetching
(77.2% improvement), the improvement is still substantial. In terms of perfor-
mance, dispatch halting improves performance by 4.1% and 1.7% for the LLC
prefetcher and prefetching at all cache levels, respectively. We thus conclude
that dispatch halting improves reliability for the cases where the hardware
prefetcher is unable to adequately prefetch memory requests.

EMQ Size. Figure 4.11 shows the impact of EMQ size on performance and
reliability. As explained in Section 4.3.3, the size of the EMQ impacts the
amount of MLP that can be exploited when dispatch is halted. This has a
direct effect on performance. The processor is unable to exploit as much MLP
as a normal OoO core can if the EMQ is smaller than the ROB, which leads
to an average performance degradation by 10% and 17% for an EMQ of size
64 and 32, respectively. A smaller EMQ however leads to improved reliability
because the EMQ holds less vulnerable state. Changing the size of the EMQ
thus exposes a trade-off in performance versus reliability.
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Figure 4.11: Impact of EMQ size on performance and reliability. EMQ size
exposes a trade-off in reliability versus performance, i.e., smaller EMQ size
leads to improved reliability at the cost of a degradation in performance.

Multiprogram Workloads. We now evaluate dispatch halting in a multicore
processor context in which multiple independent programs co-execute. We as-
sume randomly chosen multiprogram workload mixes with 2, 4 and 8 memory-
intensive benchmarks (no benchmark replication). Because co-executing pro-
grams impact each other’s performance and reliability, we use System Soft Error
Rate (SSER) [147] as defined in Chapter 3 and System Throughput (STP) [60]
to measure multicore reliability and performance, respectively; MTTF is com-
puted as the inverse of SSER. The L1 and L2 caches are private to each core,
and the LLC is shared by all cores. We assume a 2, 4 and 8 MB LLC for 2, 4
and 8 cores, respectively.

Figure 4.12 reports the impact of dispatch halting on MTTF and STP for
the multiprogram workloads. The important observation here is that MTTF
improves with increasing core count while keeping performance largely unaf-
fected — MTTF improves by 80.1%, 90.1% and 98% with 2, 4 and 8 cores,
respectively. The improvement in MTTF can be understood intuitively as in-
creased core count leads to an increase in LLC contention and thus higher LLC
miss rates. An increased number of LLC misses leads to a higher potential for
improving reliability through dispatch halting.

4.7 Related Work

Researchers have proposed several methods to address the problem of soft
error reliability in microprocessors over the past two decades. While some
techniques focused on estimating [120, 137, 144] and modeling [22, 145, 191,
210] soft errors, others were aimed at improving soft error reliability [30, 147,
153, 190, 199, 214]. Earlier techniques used radiation-hardened circuits [30] or
some form of redundancy for detection and recovery from soft errors [67, 170,
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Figure 4.12: MTTF and STP for two-, four- and eight-program workloads.
Dispatch halting improves reliability with increasing core count while keeping
performance largely unaffected.

171, 186, 198, 209]. However, these techniques incur significant performance,
area and power overheads [136]. To reduce these overheads, Soundararajan
et al. [190] apply reliability enhancing techniques only when the reliability
constraints are not met. They propose vulnerability control mechanisms for
the ROB by trading off performance and reliability at runtime. Weaver et
al. [214] propose fetch throttling and squashing instructions on a load miss to
prevent instructions from sitting idle in the back-end structures of an in-order
core. Qureshi et al. [166] detect soft errors by performing redundant execution
upon a long-latency cache miss; their approach leads to a 7.1% IPC degradation
for memory-intensive applications.

ECC and Parity. Address-based structures like L2/LLC and main memory
are commonly protected with ECC, while L1 caches, TLBs and BTBs are
protected with EDC (e.g., parity) or ECC [8, 130, 189]. For example, the L1-
D, L1-I and TLBs of the Intel Xeon Phi chip are protected with parity; the L2
is protected with ECC [90]. The other structures are not as easily protected
against soft errors. In particular, coding techniques such as ECC cannot be
applied to latency-sensitive pipeline structures such as the ROB, IQ, etc., as it
adds additional latency to each cycle [26, 40, 210]. Parity can bring significant
reliability improvements, however, the area, power and energy overheads of
parity are close to 14% for an OoO core, and are even higher for an in-order
core [40].

Latency-Tolerant Operations. Proposals aimed at improving latency tol-
erance or power efficiency, also likely improve reliability [115, 127, 195, 198].
Runahead execution is a representative technique in this category and we
have devoted Section 4.6.7 to evaluate how runahead execution affects soft
error reliability. Waiting Instruction Buffer (WIB) [115] drains miss-dependent
instructions from the issue queue to a large buffer to leverage issue queue
space for executing independent instructions under an LLC miss. Continual
flow pipelines [195] unblock the scheduler and register file for executing miss-
independent instructions. Long-term parking [174] allocates back-end pipeline
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resources as late as possible for saving power, but still allocates ROB entries
for all instructions past a long-latency load miss. Fetch halting [127] requires
offline profiling to improve power efficiency by reducing the occupancy in the
issue queue and reorder buffer. Fetch halting requires offline profiling of load
criticality and leads to an overall 6.5% degradation in IPC. Note that per-
formance degradation causes a program to run longer, which in turn leads to
increased vulnerability to soft errors. Overall, these prior proposals (still) ex-
pose a major portion of the pipeline to soft errors under an LLC miss. Dispatch
halting, on the other hand, exploits speculation over normal execution when a
LLC miss is detected (R-DH) or predicted (P-DH), and significantly improves
reliability at low performance, power and area overheads.

4.8 Summary

Transient faults lead to a major reliability challenge in modern-day com-
puter systems. This is particularly problematic for memory-intensive workloads
as a large vulnerable state is exposed upon a long-latency load miss in an OoO
core. We propose dispatch halting to address the issue of high vulnerability
of memory-intensive applications on out-of-order cores. We propose proactive
and reactive dispatch halting, which halt dispatch upon a predicted load miss
versus upon a load miss blocking commit, respectively. Instructions are tem-
porarily buffered in an extended micro-op queue — P-DH copies loads, branches
and their producer instructions to the back-end for speculative pre-execution,
whereas R-DH speculatively executes the instructions already present in the
back-end. Normal execution is resumed when the long-latency load is about to
return.

Dispatch halting significantly improves soft error reliability with marginal
impact on performance. The key insight behind dispatch halting is that the
amount of vulnerable state in the EMQ is much smaller than the cumulative
state allocated in the processor back-end structures (ROB, IQ, LQ and SQ)
upon a long-latency load miss and, in case of P-DH, the hardware structures
for speculative pre-execution are all predictive, which, by construction, are
not vulnerable to soft errors. P-DH and R-DH provide different trade-offs
in reliability, performance, power and hardware cost. R-DH yields the highest
improvement in MTTF, by 1.72× across SPEC CPU2006 (and by 2.23× for the
memory-intensive benchmarks), at no additional hardware cost while incurring
the highest, albeit modest, increase in power consumption (6.2% increase in
total system power). P-DH on the other hand improves MTTF by 1.42× on
average (1.77× for the memory-intensive benchmarks), while increasing total
system power by only 2.7%, and while incurring a hardware cost of 1.8 KB.
R-DH and P-DH degrade performance by only 1.6% and 0.9% on average,
respectively.



Chapter 5

Precise Runahead
Execution

Memory performance has increased at a much slower rate than processor
over the years. A slower memory stalls the processor frequently, as mem-
ory access instructions take longer to retire from the pipeline than other in-
structions. Computer architects have tackled the issue of long memory ac-
cess time by devising latency-tolerant techniques like out-of-order execution,
deeper cache hierarchies, and sophisticated hardware prefetching. Runahead
execution [57, 139, 141] is also a latency-tolerance technique that improves per-
formance by accurately prefetching long-latency loads. The processor triggers
runahead execution when a long-latency load causes the instruction window
to fill up and halt the pipeline. Instead of stalling, the processor removes the
blocking long-latency load and speculatively executes subsequent instructions
to uncover future independent long-latency loads and expose memory-level par-
allelism (MLP). The processor terminates runahead execution and resumes
normal operation when the stalling load returns. Because runahead execution
generates memory loads by looking at the application’s code ahead of time, the
prefetch requests it generates are accurate, leading to significant performance
benefits.

In this chapter, we take a closer look at the performance bottleneck created
by long-latency loads, and understand how runahead execution and its follow-
up techniques have been able to successfully improve the performance under
long-latency load misses. We further sift through the microarchitectural work-
ing of runahead techniques and find that there is still a potential for further
improving their performance. Our mechanism to filter out the performance
bottlenecks from runahead techniques is known as precise runahead execution
(PRE). Unlike prior runahead techniques, precise runahead does not flush the
instruction window, achieves better prefetching coverage by only executing use-
ful instructions, and improves performance even when the instruction window
is stalled for short intervals. These enhancements — aided by efficient recy-

95
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cling of back-end resources — improve both performance and energy efficiency
of runahead techniques.

In addition to substantially improving performance, runahead execution
also improves reliability in out-of-order processors. Upon a full instruction
window, all instructions starting from the long-latency load that blocked the
instruction window are squashed from the pipeline and fetched again. The
squashed instructions improve performance by generating memory prefetches,
but the processor bits exposed by these instructions do not add toward the vul-
nerability of the application. Therefore, runahead execution and its follow-up
techniques improve both performance and reliability. In Chapter 4, we thor-
oughly analyzed the problem of high soft error vulnerability posed by long-
latency loads, and proposed dispatch halting to address the problem. Sec-
tion 4.6.7 compared vulnerability reduction achieved by dispatch halting and
runahead execution. This chapter extends our analysis of soft error vulnerabil-
ity to runahead buffer [79] and precise runahead execution. Runahead buffer is
a technique proposed as an optimization on runahead execution while precise
runahead execution is a novel technique proposed in this dissertation.

This chapter is organized as follows. Section 5.1 provides background on
prior runahead techniques. Section 5.2 lists the shortcomings of runahead tech-
niques and demonstrates the potential for improving their performance. Sec-
tion 5.3 provides insights underpinning PRE and describes in detail the working
of the microarchitecture for PRE. The experimental setup and workloads are
explained in Section 5.4. Section 5.5 compares the performance of PRE to prior
runahead techniques. Section 5.6 analyses the reliability improvement incurred
by all runahead techniques including PRE. Section 5.7 refreshes more related
work in the areas of runahead execution, prefetching, pre-execution, and we
summarize in Section 5.8.

5.1 Background

In this section, we describe the original runahead proposal and the opti-
mizations introduced in follow-on work.

5.1.1 Full-Window Stalls

In an out-of-order core, a load instruction that misses in the last-level cache
(LLC) typically takes a couple hundred cycles to bring in data from off-chip
memory to the processor. Soon, the load instruction blocks commit and the
core cannot make any progress. Meanwhile, the front-end continues to dispatch
new instructions into the back-end. Once the ROB1 fills up, the front-end can
no longer dispatch instructions, leading to a full-window stall. Figure 5.1 shows
that an out-of-order processor executing a set of memory-intensive SPEC CPU
benchmarks spends about half of its execution time waiting for long-latency

1ROB and (instruction) window are used interchangeably.



5.1. BACKGROUND 97

0

20

40

60

80

100

z
e
u

s
m

c
a
c
tu

s

w
rf

G
e
m

s

le
s
lie

o
m

n
e
t

m
ilc

s
o
p

le
x

s
p
h

in
x

b
w

a
v
e

lib
q
u

a

lb
m

m
c
f

ro
m

s

p
a

re
s
t

fo
to

n
ik

a
v
g

n
o
rm

a
liz

e
d
 e

x
e
c
u
ti
o
n
 t

im
e
 (

%
) ROB full

Figure 5.1: The fraction of execution time the ROB is full for memory-
intensive benchmarks. An out-of-order processor stalls on a full ROB for
about half the time.

loads blocking the ROB (see Section 5.4 for details about our experimental
setup). We refer to the load instruction that causes a full-window stall as a
stalling load, and to the backward chain of instructions that leads to a stalling
load as a stalling slice.

5.1.2 Runahead Execution

Runahead execution [139] pre-executes an application’s own code to prefetch
data into the on-chip caches. Upon a full-window stall, the processor check-
points the Program Counter (PC), Architectural Register File (ARF), the
branch history register, and the return address stack. The processor enters
runahead mode and marks the stalling load and its dependents as invalid.
The processor pseudo-retires instructions without updating the processor ar-
chitectural state to keep the execution moving forward speculatively. Once the
stalling load returns, the pipeline is flushed and the checkpointed architecture
state is restored. This marks the exit from runahead mode.

Runahead execution incurs a significant performance and energy overhead
by flushing and refilling the pipeline when returning to normal execution mode.
Mutlu et al. [141] propose enhancements to the original runahead proposal to
alleviate the impact of this high overhead. Mainly, they propose invoking runa-
head execution only when the runahead interval is long enough to achieve high
performance benefits that overshadow the overheads of runahead execution.
In particular, they propose a policy to invoke runahead execution only if the
stalling load was issued to memory less than a threshold number of cycles ago.
They also propose another enhancement that prevents triggering runahead ex-
ecution if it overlaps with an earlier runahead interval.

5.1.3 Future Thread

Future thread [15] shares the same purpose as runahead execution, while
relying on two hardware threads, each with a dynamically allocated number
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of physical registers. When the main thread exhausts its allocated physical
registers due to a long-latency load, it stalls and the processor switches to a
second hardware context (i.e., the future thread) in an attempt to prefetch
future stalling loads. This technique requires hardware support for two hard-
ware contexts. Further, it exposes less MLP than runahead because the future
thread needs to share resources with the main thread, which limits how far the
future thread can speculate.

5.1.4 Filtered Runahead Execution

Both the original runahead and the future-thread techniques execute all
instructions coming from the processor front-end. However, many instructions
are not necessary to calculate the memory addresses used in subsequent long-
latency loads. Hashemi et al. [79] propose a technique to track and execute
only the chain of instructions that leads to a long-latency load. Upon a full-
window stall, they perform a backward data-flow walk in the ROB and store
queue to find a dependency chain that leads to another instance of the same
stalling load. This chain is stored in a buffer called the runahead buffer that
is placed before the rename stage. In runahead mode, the instruction chain
stored in the runahead buffer is renamed, dispatched and executed in a loop,
instead of generating new instructions via the front-end. Therefore, the front-
end can be clock-gated to save dynamic power consumption in runahead mode.
By executing only the stalling slice, this technique exposes more MLP per
runahead interval than traditional runahead.

5.2 Shortcomings of Prior Techniques

Both traditional runahead execution and runahead buffer significantly im-
prove single-threaded performance. However, their full potential is limited by
the following key factors.

Flushing and Refilling the Pipeline. Runahead execution speculatively ex-
ecutes and pseudo-retires instructions. At the exit of runahead execution, the
processor flushes the pipeline and starts fetching instructions from the stalling
load. Performing this operation for every runahead invocation incurs significant
performance and energy overheads. Assuming that the ARF can be saved/re-
stored in zero cycles, we estimate that every runahead invocation incurs a
performance penalty of approximately 56 cycles assuming a 192-entry ROB:
(1) refilling the front-end (8 cycles, assuming an 8-stage front-end pipeline),
plus (2) refilling the ROB by re-dispatching 192 instructions with a dispatch
width of 4, starting from the stalling load (48 cycles). These cycles cannot
be hidden and thus directly contribute to the total execution time. Our ex-
perimental results reveal that compared to an out-of-order core, traditional
runahead execution improves performance by 16% on average. However, if the
instructions that occupy the ROB when the core enters runahead mode would
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Figure 5.2: Percentage of long-latency load misses during runhead that are
identical to, versus distinct from, the stalling load. Most of the long-latency
loads during runahead mode differ from the stalling load.

not need to be re-fetched and re-processed after exiting runahead mode, the
speedup has the potential to reach 22.8%.

Limited Prefetch Coverage. Traditional runahead execution has limited
prefetch coverage because it executes all future instructions in runahead mode,
which limits how deep in the dynamic instruction stream runahead execution
can speculate. Runahead buffer filters and executes only the most dominant
stalling slice per runahead interval. Runahead buffer assumes that the load that
triggers runahead execution is likely to recur more than any other load within
the same runahead interval. Therefore, it decides to replay only the chain of
instructions that produces future instances of the same stalling load. Although
runahead buffer enables runahead execution to speculate further down the in-
struction stream, it is limited to a single slice. Unfortunately, this does not
match the characteristics of applications that access memory through a diverse
set of instruction slices and multiple different load instructions.

Figure 5.2 classifies the long-latency loads (i.e., loads that miss in the last-
level cache) that are encountered in a runahead interval into either identical
to, or distinct from, the stalling load that initiated the runahead interval. The
figure shows that most of the long-latency loads that are encountered in a
runahead interval differ from the stalling load that triggered runahead execu-
tion. Relying on a single dominant stalling load per interval, as in runahead
buffer, therefore neglects major prefetching opportunities. (Note further that
miss-dependent misses of the same unique load that appear in the dependence
chain determined by runahead buffer, cannot be prefetched — miss-dependent
misses require a prediction mechanism such as address-value delta [142] or re-
quire migrating the dependency chain to the memory controller [80].)

In general, we find that memory-intensive applications access off-chip mem-
ory through multiple load slices. Figure 5.3 categorizes all runahead intervals
according to the number of unique long-latency loads each interval contains.
Most of the runahead intervals feature off-chip memory accesses via multiple
unique load instructions.
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Figure 5.3: Runahead intervals categorized by the number of unique
long-latency loads. Most runahead intervals feature multiple unique
long-latency load instructions.

Short Runahead Intervals. The proposed enhancements to runahead exe-
cution prevent initiating runahead mode if the runahead interval is estimated
to be short. For such cases, the overhead of invoking runahead execution out-
weighs its benefit [141]. However, a significant fraction of runahead intervals
are short. We find that, on average for the memory-intensive benchmarks con-
sidered in this work, less than 56 cycles remain before the stalling load returns
by the time the window is filled up for 40% of the runahead intervals — 56
cycles is the overhead for refilling the pipeline after a runahead interval as
previously determined. Excluding short runahead intervals limits how often
runahead is triggered, which wastes significant opportunity to enhance MLP.

5.3 Precise Runahead Execution

In this work, we propose Precise Runahead Execution (PRE) to alleviate
the limitations of prior runahead proposals. PRE improves prefetch coverage
over prior proposals by prefetching all stalling slices in runahead mode, un-
like runahead buffer, and executing only the instruction chains leading to the
loads, unlike the original runahead proposal. Moreover, PRE does not release
processor state when entering runahead mode, hence it does not need to flush
and refill the pipeline when resuming normal mode. This reduces the cost for
invoking runahead execution.

We first describe the key insights that inspire the design of PRE, after which
we describe PRE’s architecture and operation in detail.

5.3.1 PRE: Key Insights

PRE builds on three key insights.

Insight #1: There are enough available physical register file (PRF) and issue
queue (IQ) resources to initiate runahead execution upon a full-window stall.
To execute an instruction, the processor minimally needs a physical register
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Figure 5.4: Percentage general-purpose (GP) registers, floating-point (FP)
registers and issue queue (IQ) entries that are available upon a full-window
stall due to a long-latency load blocking commit. About half the issue queue
and physical register file entries are available upon a full-window stall.

to hold the instruction’s destination value plus an issue queue entry for the
instruction to wait until an execution unit becomes available. Figure 5.4 shows
the percentage of available (i.e., unused) processor issue queue and physical
register file entries at the entry of runahead mode. On average, 37% of the
issue queue entries, 51% of the integer registers and 59% of the floating-point
registers are free. Obviously, we can exploit these resources by increasing the
ROB size. Therefore, we perform an experiment where we keep increasing the
ROB size by 64 while keeping other core parameters fixed. Relative to the
baseline OoO core (ROB=192), the performance improvements for ROBs of
size 256, 320, 384, 448, 512, and 576, are 9.2%, 12.8%, 14.4%, 15%, 15.1%, and
15.2%, respectively, and the performance does not improve further for a larger
ROB.

Although we increase the ROB size by 3×, nevertheless, the performance
does not scale accordingly. This is because the majority of instructions in
the ROB occupy resources without significantly boosting the performance of
memory-intensive benchmarks. Therefore, the availability of resources — that
is, the unused of 37% of the issue queue entries, 51% of the integer registers and
59% of the floating-point registers — at the full-window stalls is not an artifact
of the unbalanced processor design. In fact, Section 5.4 provides quantitative
evidence that our baseline configuration is indeed a balanced design. We thus
conclude that there are enough issue queue entries and registers upon a full-
window stall to initiate the speculative execution of instructions that lead to
anticipated future long-latency load misses.

Insight #2: There is no need to pre-execute all instructions during runahead
mode. Instead, we can speculate deeper in the dynamic instruction stream by
only pre-executing stalling load slices. The majority of instructions executed
during runahead execution occupy core resources (e.g., PRF, IQ, ALU) without
actually contributing to generating useful prefetches. Ideally, we only need to
speculatively execute instructions that lead to future long-latency load stalls,
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i.e., we need to execute the producers of the long-latency loads and not their
consumers. This not only reduces the core resources needed during runahead
execution, it also allows for speculating deeper down the dynamic instruction
stream and extract more useful prefetches. PRE achieves this by identifying
and speculatively executing stalling load slices, i.e., backward slices of long-
latency loads that lead to full-ROB stalls.

Insight #3: IQ resources are quickly recycled during runahead execution. Re-
cycling PRF resources requires a novel mechanism that is different from con-
ventional register renaming schemes. Stalling load slices are relatively short
chains of dependent instructions. These chains of load-producing instructions
occupy IQ resources for only a short time, i.e., instructions wait for their input
operands for a few cycles and then execute. In contrast, the load consumers
hold on to IQ resources as they wait for the load values to return from memory.
In other words, PRE is able to quickly recycle IQ resources by only executing
stalling load slices during runahead mode. The situation is different for the
physical register file: stalling load slices hold up PRF resources if they are
released using conventional register renaming. PRE therefore includes a novel
register reclamation mechanism to quickly recycle physical registers in runa-
head mode.

Figure 5.5 depicts a schematic diagram of an out-of-order core supporting
PRE. The following subsections describe its operation in detail.

5.3.2 Entering Precise Runahead Execution

As in prior techniques, PRE is invoked on a full-window stall. PRE enters
runahead mode after checkpointing the Program Counter (PC) of the instruc-
tion past the full-ROB, the Register Alias Table (RAT), and the return address
stack (RAS). The instructions filling the ROB can still execute as they do in
normal mode. However, no instructions are committed from the ROB in runa-
head mode. Therefore, no updates are propagated to the ARF and the L1
D-cache. During runahead execution, PRE dynamically identifies the instruc-
tions that are part of potential stalling slices as they arrive from the decode unit
(as described in the next section), and the core speculatively executes them.

5.3.3 Identifying Stalling Slices

PRE tracks the individual instructions that form a stalling slice in a new
cache that we call the Stalling Slice Table (SST). As Figure 5.5 shows, the SST
is accessed after the decode stage. The SST is a fully-associative cache that
contains only instruction addresses (i.e., PCs). If an instruction address hits
in the SST, that instruction is part of a stalling slice. Whenever a stalling
load blocks the ROB, we store it in the SST. To facilitate tracking the chain of
instructions that leads to that load, we extend each entry in the RAT to hold
the PC of the instruction that last produced that register. When the register
renaming unit maps the destination architectural register of an instruction to
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a new physical register, it also updates the RAT entry corresponding to that
architectural register with the PC of the instruction.

We track the stalling slices in an iterative manner. First, the stalling load
is stored in the SST. When the stalling load is decoded again, e.g., in the next
iteration of a loop, the PC of the stalling load hits in the SST. PRE checks the
RAT entry for the load’s source registers to find the PCs of the instructions that
last produced those registers; these PCs are then stored in the SST. Similarly,
whenever an instruction hits in the SST in the following iterations, we track
the PC information of its producer instructions and add those to the SST as
well. This iterative process effectively builds up the stalling slice in the SST.
PRE follows this same process for all stalling loads. By tracking all stalling
slices in the SST, PRE does not limit prefetch coverage to a single slice as in
the runahead buffer proposal.

Branch instructions are not part of a stalling load slice because they are
not involved in the load address calculation. Therefore, branch instructions
are not stored in the SST. A branch instruction can modify the stalling slice by
changing the producer of one instruction in the slice, potentially forming two
slices that lead to the same load instruction. PRE simply identifies the new
producers and adds them to the SST. In the following iterations, PRE builds
the whole slice in SST similar to any other slice. In the end, SST tracks all
slices that lead to stalling loads.

We find that an SST of limited size is effective at capturing stalling slices to
generate useful prefetches in a runahead interval. As the application progresses
to a new loop, new stalling slices are identified and stored in the SST. With
an LRU replacement policy, old and unused stalling slices are automatically
evicted from the SST. It may happen that a slice is not complete in the SST,
e.g., while being constructed, however, the slice will soon be completed in the
next few iterations. We find that an SST with 128 entries is sufficient to gain the
majority of the performance benefits of runahead execution (see Section 5.3.8).

In Section 4.3.4, we exploit PIT for speculatively executing instructions
when the dispatch is halted. The speculative execution of instructions under
proactive dispatch halting helps in generating MLP and resolving mispredicted
branches after a halting load instruction. The working of SST is similar to
the PIT as both PIT and SST augment RAT for iteratively finding the past
instructions that produce value of the source register of an instruction. How-
ever, the types of instructions stored in the PIT and SST are different. The
PIT stores the backward slices of all load instructions and branch instructions;
the load and branch instructions, however, are not stored in the PIT. SST,
in contrast, stores stalling load instructions and their backward slices; branch
instructions and their backward slices are not stored in the SST.

5.3.4 Execution in Runahead Mode

PRE filters and speculatively executes all stalling slices that follow the
stalled window using the SST. After instruction decode, PRE executes only
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inst.
id

instruction dst src1 src2 register 
to free

I1 add r1 ← r2, r3 P1 P2 P3

I2 mul r2 ← r1, r4 P5 P1 P4 P2

I3 ld r1 ←mem[x] P6 P1

I4 add r2 ← r1, r3 P7 P6 P3 P5

I5 add r2 ← r4, r5 P9 P4 P8 P7

I6 sub r1 ← r2, r6 P11 P9 P10 P6

inst.
id

register 
to free

executed
?

I1 1

I2 P2 1

I3 P1 0

I4 P5 0

I5 P7 1

I6 P6 0

PRDQRegister renaming and its outcome

Figure 5.6: Recycling physical registers during precise runahead execution
using the PRDQ.

the instructions that hit in the SST because they are necessary to generate
future loads. PRE achieves the benefits of filtered runahead execution as with
runahead buffer because it executes only the stalling slices. However, because
the SST stores all stalling slices, PRE manages to executes all potential stalling
slices, which leads to much improved prefetch coverage.

Instructions issued in runahead mode use only the free registers that are
unused when runahead mode is triggered. These registers are allocated and
recycled in runahead mode without affecting the physical registers allocated
in normal execution. PRE properly maintains dependences among the exe-
cuted instructions and manages the allocation and reclamation of registers in
runahead mode as described in Section 5.3.5. At the same time, the processor
continues executing the non-speculative instructions that already occupy the
ROB. The results are written to the physical destination registers that were
allocated before triggering runahead execution. When the processor resumes
normal operation, it restores the architectural state it checkpointed upon runa-
head entry. Only instructions that were fetched in runahead mode need to be
fetched and processed again. The physical registers that were free prior to runa-
head execution are reclaimed. The physical registers that hold values written
by instructions in the ROB in runahead mode can properly update the ar-
chitectural state and get reclaimed when their respective instructions retire in
normal mode.

In runahead mode, PRE executes all the slices generated by the front-end
of the processor. The front-end relies on the branch predictor to steer the flow
of execution in runahead mode. PRE does not update the state and history of
the branch predictor during runahead execution. However, branch instructions
that reside in the ROB can be resolved in runahead mode and update the
predictor as they would in normal mode. If a branch instruction in the ROB
turns out to be mispredicted, the processor discards all wrong path instructions,
flushes the pipeline, and resumes normal execution.

5.3.5 Runahead Register Reclamation

PRE requires sufficient issue queue entries and physical registers to run
ahead. As reported in Section 5.3.1, such resources are usually available when
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entering runahead mode. Stalling slices are usually short and therefore issue
queue entries are quickly reclaimed and are unlikely to hinder forward progress
of runahead execution. In all of our experiments, we did not observe issue
queue pressure during runahead.

PRE requires special support for reclaiming physical registers during runa-
head execution. In an out-of-order core, a physical register can be freed only
when the last consumer of the renamed architectural register commits [200].
Since instructions that are fetched in runahead mode are discarded after they
finish execution, we cannot rely on the conventional renaming policy to free
physical registers. Thus, we devise a new mechanism, called Runahead Reg-
ister Reclamation (RRR), to free physical registers in runahead mode. RRR
relies on a new FIFO hardware structure, called the Precise Register Dealloca-
tion Queue (PRDQ) in Figure 5.5.

Figure 5.6 illustrates the PRDQ in more detail. Each entry in the PRDQ
has three fields: an instruction identifier, a physical register (tag) to be freed,
and an ‘execute’ bit that marks whether the instruction has completed execu-
tion. The figure also provides a code example to help explain the operation
of the PRDQ. The instructions in the example are numbered following pro-
gram order. For example, instruction I2 precedes instruction I4 in program
order. The figure shows the instructions after the register renaming stage. In
this code example, instruction I4 reads the value of architectural register r1

from physical register P6, which is written by instruction I3. I4 also reads the
value of architectural register r3 from physical register P3 written by an older
instruction not shown in the code example.

PRDQ entries are allocated in program order at the PRDQ tail. Register
renaming maps a free physical register to the destination architectural register
of an instruction in runahead mode. We mark the old physical register mapped
to the same (destination) architectural register in the PRDQ entry. A PRDQ
entry is deallocated when the instruction is executed (i.e., ‘execute’ bit is set)
and reaches the PRDQ head. PRDQ deallocation is also done in program or-
der. The old physical register associated with the instruction is freed upon
deallocation. For example, in Figure 5.6, the renaming unit maps the desti-
nation architectural register of instruction I4 (i.e., r2) to physical register P7

and marks old physical register mapped to r2 (i.e., P5) to be freed when I4 is
retired and deallocated from the PRDQ.

While instructions may execute and thus mark the ‘execute’ bit out-of-
order, in-order PRDQ deallocation guarantees that a physical register is freed
only when there are no more instructions in-flight that may possibly read that
register. The PRDQ is only enabled in runahead mode and its entries are
discarded once the processor returns to normal mode.

5.3.6 Exiting Precise Runahead Execution

The core exits runahead mode when the stalling load returns. Upon exit,
the core resumes normal execution after having restored the checkpointed PC,
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RAT, and RAS. As instructions are preserved in the ROB, the core starts
committing instructions right away starting from the stalling load. The front-
end re-directs fetch from the first instruction after the full-window stall, i.e.,
the PC which was checkpointed when entering runahead mode.

5.3.7 Front-End Optimization

PRE executes future stalling slices for the entire length of a runahead in-
terval. During this time, PRE requires the front-end of the processor to keep
fetching and decoding instructions to dynamically explore the code. Therefore,
the front-end has to remain active during runahead mode. The instructions
fetched in runahead mode are fetched and processed again for execution in nor-
mal mode. This increases the energy overhead in the front-end of the processor
for PRE compared to runahead buffer [79].

To avoid wasting the work and energy of the front-end in runahead mode,
we propose the Extended Micro-Op Queue (EMQ) as shown in Figure 5.5. Su-
perscalar out-of-order processors typically feature a dedicated micro-op queue
to hold micro-ops after instruction decode. For example, Intel Skylake uses a
micro-op queues of 64 entries [91]. We propose extending the number of en-
tries of the processor’s micro-op queue, hence the name (EMQ). The micro-op
queue is a circular FIFO buffer and thus can be extended without impacting
the complexity of the design. We augment PRE with an EMQ to store the
micro-ops generated in runahead mode.

When using the EMQ, PRE stores all the decoded instructions in runahead
mode, including the ones that hit in the SST. When the processor resumes
normal execution, it does not need to re-fetch and re-decode all these instruc-
tions again. These instructions are directly renamed, dispatched and executed
in the back-end. Note that with this optimization, the number of speculatively
executed instructions in runahead mode is constrained by the size of the EMQ.
When the EMQ fills up, the core stalls until the stalling load returns, at which
point, the processor exits runahead mode. Alternatively, the processor can
continue fetching instructions beyond the size of EMQ for the whole runahead
interval. In this case, the processor only needs to re-fetch the instructions that
could not be buffered in the EMQ during runahead execution. This design
alternative, however, is similar to PRE’s original design and does not lead to
significant variation in its energy and performance profile.

Using EMQ is an optional design optimization. It is not mandatory for
PRE’s runahead operation. As we show in Section 5.5.3, augmenting PRE with
EMQ of various sizes leads to different design points that trade off performance
for energy. Designers can select a suitable design choice based on the available
area and energy budgets.
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Figure 5.7: Performance impact of changing the size of the SST and PRDQ.
Performance is normalized to the OoO core. An SST size of 128 entries
balances performance and hardware cost; performance saturates for PRDQ
size of 192 entries.

5.3.8 Hardware Overhead

As mentioned before, PRE relies on the newly proposed SST and PRDQ.
We conduct a sensitivity analysis to empirically select their sizes. Figure 5.7
reports the impact of varying SST and PRDQ sizes on performance (normalized
to baseline OoO core). To balance hardware cost and performance, we opt for
an SST with 128 entries; increasing the SST size beyond 128 entries leads to
a minor gain in performance while incurring a significant hardware cost. We
set PRDQ size to 192 entries because it achieves the best performance and its
hardware cost is small.

An SST with 128 entries each with a 4-byte tag requires 512 Bytes of storage.
An entry in the PRDQ consists of a single bit to indicate that the instruction
finished execution, an 8-bit tag for the physical register to free, and 12 bits
(assuming a maximum of 4096 runahead instructions) to give each instruction
explored in runahead mode a unique ID. This adds up for a total of 504 Bytes.
Additionally, we extend each mapping of the 64-entry RAT by 4 bytes for a
total of 256 Bytes. This leads to a total hardware cost of 1.24 KB. When PRE
is augmented with an (optional) EMQ, the hardware overhead is increased
according to the selected EMQ size, with each EMQ entry requiring 4 Bytes
to hold a micro-op. In comparison, runahead buffer incurs a hardware cost
of about 1.7 KB and uses expensive CAM lookups in the ROB to determine
stalling slices. Overall, the hardware cost and complexity of PRE is smaller
compared to the runahead buffer proposal.
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Frequency 2.66 GHz
Type out-of-order
ROB size 192
Issue queue size 92
Load queue size 64
Store queue size 64
Micro-op queue size 28
Pipeline width 4
Pipeline depth 8 stages (front-end only)
Branch predictor 8 KB TAGE-SC-L

Functional units 3 int add (1 cyc), 1 int mult (3 cyc),
1 int div (18 cyc), 1 fp add (3 cyc),
1 fp mult (5 cyc), 1 fp div (6 cyc)

Register file 168 int (64 bit)
168 fp (128 bit)

SST size 128 entry, fully assoc, LRU, 6r 4w
PRDQ size 192 entry, 4r 4w

L1 I-cache 32 KB, assoc 4, 2 cyc
L1 D-cache 32 KB, assoc 8, 4 cyc
Private L2 cache 256 KB, assoc 8, 8 cyc

Shared L3 cache 1 MB, assoc 16, lat 30 cyc

Memory DDR3-1600, 800 MHz
ranks: 4, banks: 32
page size: 4 KB, bus: 64 bits
tRP-tCL-tRCD: 11-11-11

Table 5.1: Baseline configuration for the out-of-order core.

5.4 Methodology

Simulation Setup. We evaluate precise runahead execution using the cycle-
level, hardware-validated Sniper 6.0 [32] simulator, using its most accurate
core model. The configuration for our baseline out-of-order core is provided
in Table 5.1. The sizes of the ROB, the physical register files, and the micro-
op queue are based on the Haswell architecture [62, 76]; the size of the issue
queue is set as in the runahead buffer paper [79] for fair comparison. We
verify that this baseline configuration is indeed balanced, see Figure 5.8, i.e.,
the physical register file (PRF) and issue queue (IQ) sizes are the minimum
sizes that lead to the best performance for the given ROB size. We assume
that hardware prefetching is not enabled in our baseline core. However, we
do evaluate the impact of hardware prefetching in Section 5.5.4. We consider
an 8 KB TAGE-SC-L branch predictor as implemented for the 2016 Branch
Prediction Championship [177].

Power. We use McPAT [118] to calculate power consumption assuming a
22 nm chip technology. We calculate power for the SST, EMQ and PRDQ
using CACTI 6.5 [119] and add those estimates to the McPAT power numbers.
We report system power (processor plus main memory).
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(a) Sensitivity to the PRF size
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Figure 5.8: Impact of PRF and IQ sizes on performance while keeping the
other configuration parameters constant. Overall, the baseline OoO with 168
PRF entries and 92 IQ entries is a balanced configuration.

Cycle time. We model the impact of the newly added hardware structures
on processor cycle time using CACTI 6.5 [119]. We assume that the front-end
can deliver up to six micro-ops per cycle to the micro-op queue. Therefore,
SST has 6/2 read/write ports. In the runahead mode, we can check up to six
micro-ops per cycle in the SST. PRDQ is an in-order queue with 4/4 read/write
ports. The cycle time for accessing the SST and PRDQ equals 0.314 ns and
0.102 ns, respectively. Since this is below the processor cycle time (0.375 ns),
we conclude that the accesses to the SST and PRDQ do not impact processor
timing. (The SST can be pipelined, if needed, since it is not on the critical
path.)

Workloads. We evaluate a total of 16 memory-intensive benchmarks from
the SPEC CPU2006 and SPEC CPU2017 suites. From the CPU2006 suite, we
select the same benchmarks as runahead buffer [79], and we maintain the same
order when presenting our results. Compared to SPEC CPU2006, there are
fewer memory-intensive benchmarks in the CPU2017 suite and, even though
some benchmarks (e.g., bwaves) have multiple input data sets, their fraction
of full-window stalls is similar in our setup. The three new memory-intensive
benchmarks we have included from the SPEC CPU2017 suite are roms r 1,
parest r 1 and fotonik3d r 1. We create 1 Billion instruction SimPoints [180]
for each benchmark.

5.5 Evaluation

We compare the following four mechanisms:

• OoO: Our baseline out-of-order core from Table 5.1.
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Figure 5.9: Performance (IPC) normalized to an out-of-order core for
runahead execution, runahead buffer and precise runahead execution. PRE
improves performance by 38% on average compared to the baseline
out-of-order core.

• RA: The runahead execution, as explained in Section 5.1.2, with the fol-
lowing enhancements [79, 141]:

– There are no overlapping runahead intervals.

– Runahead execution is triggered only when the stalling load instruc-
tion was issued to memory less than 250 cycles earlier.

• RA-buffer: The runahead buffer mechanism explained in Section 5.1.4.
In runahead mode, the front-end of the processor is clock-gated and the
dominant stalling load slice for each runahead interval is executed from
the runahead buffer. We assume all the chains are stored in a chain cache.
Therefore, no extra overhead is required to perform backward walks in
the ROB.

• RA-hybrid: The hybrid runahead approach selects the runahead technique
(RA or RA-buffer) that yields the highest performance on a per-application
basis.

• PRE: The precise runahead execution proposal as described in this paper.

We use instructions per cycle (IPC) to quantify performance. We calculate av-
erage performance across all benchmarks using the harmonic mean IPC across
all benchmarks.

5.5.1 Performance

Figure 5.9 reports performance for the various runahead techniques, nor-
malized to the baseline OoO core. While the RA and RA-buffer improve per-
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formance over the OoO core by on average 16.0% and 13.3%, respectively, RA-
hybrid which selects the best of both techniques improves performance by 20%.
PRE on the other hand manages to improve performance by 38.2%. This is an
additional 18.2% improvement over prior runahead techniques. Most of the ap-
plications gain a significant performance improvement with PRE. In general, we
find that applications that spend more time waiting on a full-window stall have
a higher chance to benefit from PRE. PRE achieves the highest performance
improvements for GemsFDTD, leslie3d, libquantum, roms and fotonik. As
Figure 5.1 shows, these applications spend more than 60% of their execution
time on full-window stalls, providing PRE a significant opportunity to generate
useful prefetches. The performance improvements for these applications range
from 52% up to more than 2×, see libquantum, roms and fotonik. Other
applications that spend less time waiting for long-latency loads like zeusmp,
wrf, milc, sphinx3, bwaves and parest still achieve a significant performance
improvement that ranges between 20% and 40%.

The significant performance improvement of PRE relative to prior runahead
techniques comes from its higher prefetch coverage and the fact that it avoids
flushing and re-filling the pipeline when leaving runahead mode. However,
we find a few outlier cases where PRE has only a minor benefit compared to
either the OoO or to prior runahead techniques. We observe that none of the
runahead techniques significantly improve performance of the OoO core for
lbm. This benchmark experiences full-window stalls for only 2.7% of the total
execution time because the pipeline stalls on other resources. Therefore, the
opportunity to prefetch in runahead mode is quite small. On the other hand,
omnetpp is characterized by long stalling slices, as corroborated by [79]. The
long stall slices limit PRE’s opportunity to explore multiple slices per runahead
interval. Therefore, PRE performs similarly to prior runahead execution for
omnetpp.

The only benchmarks that benefit from RA-buffer more than PRE are
libquantum and mcf. For libquantum, about 50% of the load instructions
that access memory in a runahead interval are identical to the stalling load
as Figure 5.2 shows. The rate at which RA-buffer executes the same stalling
slice to generate prefetches exceeds that of PRE, which has to dynamically
determine the slices. The benefits of the faster prefetch generation in a limited
runahead interval for libquantum outweigh the benefits of finding all slices.
On the other hand, mcf is characterized by its high branch misprediction rate.
This means that both PRE and prior runahead techniques invoke useless runa-
head intervals that execute wrong-path instructions, and thus do not improve
performance. Branch instructions that wait for the stalling load to be re-
solved benefit from RA-buffer because it prefetches only stalling load slices.
RA-buffer is particularly beneficial for load-dependent branches that are mis-
predicted. Therefore, it manages to slightly improve performance over PRE
which dynamically explores all stall slices.

We now further analyze the sources of performance improvement for PRE
over prior runahead techniques.
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Figure 5.10: Performance impact of flushing the pipeline when leaving
runahead mode and refilling it when resuming normal execution in RA. PRE
avoids this overhead as it does not need to flush the pipeline when leaving
runahead mode.

Pipeline Refill Overhead. PRE does not need to flush and refill the pipeline
when resuming normal mode. This alone gives PRE a significant performance
improvement over the original runahead proposal. Even with the enhancements
introduced to the original runahead technique, the overhead of flushing the
pipeline when leaving runahead mode and refilling it starting from the stalling
load still limits its performance improvement. Figure 5.10 demonstrates the
significant impact of flushing and re-filling the processor pipeline on RA’s per-
formance improvement. Every exit from the runahead mode is followed by a
pipeline bubble of at least 56 cycles — 8 cycles to re-fill the front-end and 48
cycles to re-dispatch the same instructions to the ROB. As the figure shows,
RA improves the performance of the OoO core by 16% on average. The perfor-
mance improvement jumps to 22.8% when the flushing and refilling overhead
is avoided.

MLP. PRE improves the degree of MLP that is exposed over prior proposals,
for three reasons. First, PRE triggers runahead execution even for relatively
short runahead intervals. This allows PRE to invoke runahead execution 1.8×
more than RA and RA-buffer. Second, PRE executes only the stalling slices,
which enables PRE to uncover long-latency loads at a higher rate than RA per
runahead interval, and thus speculate deeper down the dynamic instruction
stream. Third, PRE targets multiple stalling load slices during runahead exe-
cution in contrast to RA-buffer which speculatively executes only one stalling
slice in a loop.

As Figure 5.11 shows, the MLP generated by RA, RA-buffer, RA-hybrid,
and PRE is 1.5×, 1.3×, 1.6×, and 2× higher than for the OoO core. PRE im-
proves MLP for most of the applications, except for the few outlier applications
that were previously discussed. In general, the higher MLP of PRE reflects its
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Figure 5.11: Normalized MLP. PRE improves MLP by 2× compared to an
out-of-order core.
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Figure 5.12: Normalized LLC miss count during normal (non-runahead)
execution. PRE’s accurate prefetches reduce the number LLC misses by 50%
compared to an OoO core.

superior prefetch quality, which leads to higher overall performance. It is worth
noting that although RA-buffer can generate about 2× more memory requests
than RA per runahead interval as reported in [79], overall performance is not
proportionally improved.

LLC Miss Rate. Figure 5.12 reports normalized LLC miss rate in normal
mode for all the runahead techniques. All runahead techniques reduce the
number of LLC misses observed during normal mode. However, we find that
PRE covers more LLC misses than any other prior runahead technique. On
average, RA, RA-buffer, and RA-hybrid reduce the number of LLC misses by
26.4%, 27.7% and 31%, respectively, whereas PRE reduces the number of LLC
misses by 50.2%. This higher reduction in LLC miss rate is a result of covering
more stalling slices deeper down the dynamic instruction stream.

5.5.2 Energy Analysis

Figure 5.13 shows the energy consumption for all runahead techniques nor-
malized to the OoO core. RA increases energy consumption of an OoO core by
2.4% on average. RA-buffer clock-gates the front-end during runahead mode
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Figure 5.13: Normalized energy consumption. PRE reduces energy
consumption by 6.8% compared to an out-of-order core, while runahead
execution slightly increases energy consumption or is energy-neutral.

to reduce energy overhead to only 0.4% relative to the baseline OoO core. RA-
hybrid slightly reduces the energy consumption compared to RA-buffer. In
general, we find that the significant performance improvement of PRE allows
it to complete the same task with less energy than the other techniques for
most of the applications. Similar to our earlier discussion, only few outlier
cases such as libquantum and mcf consume less energy using RA-buffer than
with PRE. On average, PRE performs the same task with 6.8% less energy
compared to the baseline OoO core.

5.5.3 Front-End Energy Optimization

PRE requires the front-end of the processor to remain active in runahead
mode to find stalling slices further down the dynamic instruction stream. Upon
resuming normal mode, the processor fetches and executes all the instructions
that were fetched in runahead mode again. In Section 5.3.7, we proposed the
EMQ as an optimization to save the energy consumed by the front-end in
runahead mode. The EMQ is a design choice that trades off performance for
energy.

Figure 5.14 shows the performance-energy trade-off for PRE with an EMQ
of different sizes in multiples of the ROB size. (For example, an EMQ of size 2×
has 384 entries.) Without an EMQ, PRE keeps exploring the code throughout
the entire runahead interval, leading to the highest performance improvement,
however, this requires refetching instructions upon return to normal mode.
With a limited EMQ, PRE can save the work of the front-end but may halt
runahead execution before the end of the runahead interval. In contrast, larger
EMQs enable PRE to explore more code than smaller ones, leading to higher
performance and saving more work in the front-end. Thus, with a larger EMQ
size, performance improves and energy consumption decreases. With a suffi-
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Figure 5.14: Performance versus energy normalized to the OoO core. PRE
improves performance and reduces energy consumption compared to an
out-of-order core. Increasing the size of the (optional) EMQ further reduces
energy consumption and presents an energy-performance trade-off.

ciently large EMQ, it is possible to find design points that achieve comparable
performance to PRE (without EMQ) while significantly saving energy, such as
in the case for the EMQ=8× and EMQ=4× configurations. This comes at an
increase in hardware cost though, e.g., an EMQ=4× storing 4 Bytes per entry
requires 3 KB.

Interestingly, Figure 5.14 also shows that augmenting PRE with EMQ pro-
vides better performance-energy trade-off points than prior runahead tech-
niques even with limited EMQ sizes. For example, for the EMQ=1× con-
figuration, PRE yields higher performance than RA-buffer at a lower energy
cost. Similarly, for the EMQ=2× configuration, PRE yields higher performance
than all prior runahead techniques at a lower energy cost. Whether to use an
EMQ or not, and which EMQ size to select, are design alternatives that can
be selected at design time based on the available energy and area budgets.

5.5.4 Architecture Sensitivity

Hardware Prefetching. Hardware prefetchers and runahead techniques both
aim at bringing data into the on-chip caches before it is needed by the work-
load. Generally speaking, hardware prefetchers exploit memory access patterns
to predict which data to prefetch. On the other hand, runahead techniques gen-
erate prefetch requests by pre-executing the code. Both techniques are com-
plementary to each other. If the hardware prefetchers are able to predict LLC
misses and convert them into hits, runahead execution is not triggered. Con-
versely, when runahead techniques are effective at prefetching data, hardware
prefetchers are invoked fewer times.
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Figure 5.15: Performance relative to the baseline OoO core (without
prefetching) when hardware prefetching is enabled at the LLC and all the
cache levels. PRE improves performance even when conventional stride
prefetching is enabled at the LLC and all cache levels.

Figure 5.15 shows the performance improvement of the baseline OoO core
and PRE when augmented with hardware prefetchers. We evaluate two config-
urations: (i) a stride-based LLC hardware prefetcher with 16 streams, and (ii)
a stride-based hardware prefetcher with 16 streams incorporated at all levels
in the hierarchy. PRE leads to significant performance improvements even for
processor configurations with conventional hardware prefetchers. For the con-
figuration with the LLC prefetcher as a baseline, PRE improves performance by
21.5%. For the configuration with prefetchers engaged at all cache levels, PRE
improves performance by 9.1%. The performance benefit obtained through
PRE is expected to reduce with more aggressive hardware prefetching. Nev-
ertheless, we conclude that PRE offers non-trivial performance improvements
even under (aggressive) hardware prefetching.

Physical Register File. PRE leverages available PRF entries to speculate
beyond a full ROB. Figure 5.16(a) quantifies PRE’s average performance im-
provement as we scale the number of PRF entries (PRF=N means N integer
and N floating-point registers). PRE performance is (obviously) sensitive to
the number of physical registers. Small PRF sizes exhaust the number of avail-
able PRF entries, preventing PRE from speculating beyond the full ROB. Our
baseline configuration assumes a balanced PRF size of 168 entries. Smaller
PRF sizes, even if this leads to an unbalanced baseline design, would still ex-
perience a non-trivial improvement through PRE: 19.7% average performance
improvement for a PRF size of 128 and 31.2% for a PRF size of 144.

Issue Queue. Similarly, PRE leverages available issue queue (IQ) sizes to
speculate beyond a full ROB. Figure 5.16(b) reports the average performance
improvement achieved through PRE as a function of IQ size. Small IQ sizes
limit the number of resources that PRE can use during runahead mode, which
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Figure 5.16: Performance improvement through PRE as a function of PRF
and IQ size. PRE improves performance even for PRF and IQ sizes that are
underprovisioned.

limits the performance improvement achieved by PRE. Our baseline assumes
an IQ size of 92. Smaller IQ sizes still enable PRE to achieve substantial
performance improvements: 31.9% for an IQ size of 64 and 35.8% for an IQ
size of 80.

5.6 Impact on Reliability

RA and RA-buffer trigger runahead mode upon a full-window stall. All in-
structions executed in runahead mode are executed again when the core returns
to the normal mode. Therefore, the bits exposed by instructions in runahead
mode do not count toward the ACE bit count of the application. By conse-
quence, RA and RA-buffer, while improving performance, also improve soft
error reliability. The longer the duration of the core in runahead mode, the
higher the improvement in reliability, assuming that the execution in runahead
mode leads to some performance improvement. In PRE, not all instructions
executed in runahead mode are speculative as the instructions within the ROB
are always normal-mode instructions. These ROB instructions, and the back-
end structures occupied by them, are thus vulnerable to soft errors. However,
the instructions executed beyond the ROB in runahead mode are speculative.
Similar to RA and RA-buffer, bits exposed by these instructions are un-ACE
bits. Since these instructions substantially improve the performance of the
applications in PRE without contributing any vulnerable microarchitectural
state, the overall number of bits exposed in PRE is lower than is the case for
a conventional out-of-order core.

We again use ACE analysis (see Section 2.3) for computing vulnerable
processor bits, and the bits per entry for back-end structures are calculated
according to Table 4.2. We use ABC as the metric for quantifying soft error
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Figure 5.17: Comparing the impact on reliability for all runahead techniques.
Relative to an out-of-order core, all runahead techniques improve reliability,
however, the improvement for prior runahead techniques is higher than PRE.

reliability of applications. It is worthwhile to note that we deem mean time
to failure (MTTF) as an appropriate metric in Chapter 4 while quantifying
reliability of applications under dispatch halting. The reason MTTF correctly
quantifies reliability of single-program workloads under dispatch halting is be-
cause the dispatch halting has a minor impact on performance. Therefore,
ABC directly translates to MTTF; FIT rate and MTTF have also been widely
popular metrics in the fault-tolerance community for a long time. Since all
the runahead techniques improve single-thread performance on an out-of-order
processor, ABC is a more suitable metric than MTTF for quantifying the im-
pact of all runahead techniques on reliability.

Figure 5.17 shows ABC for RA, RA-buffer, RA-hybrid, and PRE, relative
to the baseline OoO core. Please refer to Figure 5.9 for the corresponding per-
formance comparison of all the techniques. Overall, the ABC for RA decreases
with increasing gains in performance, and RA is able to reduce ABC by 43.7%
across all benchmarks. For benchmarks such as sphinx3, libquantum and
parest, RA reduces the number of exposed ACE bits by more than 60%. For
these benchmarks, RA also reports a substantial performance gain of 15.6%,
53.6% and 21.9%, respectively. The majority of other benchmark — like
cactusADM, wrf, GemsFDTD, leslie3d, and fotonik, etc., experience a reduc-
tion in ABC under RA in the range of 40–60%. For benchmarks that do not
encounter frequent full-window stalls, like lbm and mcf, the improvement in
ABC (and performance) is also the lowest among all benchmarks. Interest-
ingly, RA-buffer achieves only marginally higher reduction in ABC compared
to RA, while also performing slightly worse than RA. This is because the core
is in runahead mode for a longer duration than RA and each runahead interval
brings a lower gain in performance than RA. RA-buffer only executes future
slices of a stalling load, missing opportunity to trigger memory requests for
other long-latency loads. The other long-latency loads also trigger runahead
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performance energy reliability
benefit requirement improvement

OoO neutral neutral neutral

RA high high high

RA-buffer high neutral high

PRE very high low medium

Table 5.2: Performance, energy and reliability of the runahead techniques
compared to an out-of-order processor.

mode when they lead to full-window stalls. Overall, analogous to their respec-
tive gains in performance, RA and RA-buffer achieve similar improvements in
ABC. RA-hybrid, which selects the better choice between RA and RA-buffer
for each benchmark, also achieves similar reductions in ABC as RA-buffer. In
PRE, the ACE bits exposed by the instructions in the ROB, and the other
back-end structures these instructions occupy between dispatch and commit,
are also vulnerable. This is clearly reflected in ABC for PRE in Figure 5.17.
For all benchmarks, PRE exposes more ACE bits than RA and RA-buffer, and
achieves an overall reduction in ABC by 28% compared to the OoO core.

Table 5.2 compares the performance, energy and reliability of runahead
techniques to an out-of-order core. Although both RA and RA-buffer sub-
stantially improve performance, nevertheless, their performance can be further
improved by mitigating overheads and improving prefetch coverage. PRE al-
most doubles the performance benefit of runahead techniques by eliminating
these overheads. While RA-buffer is energy-neutral relative to the OoO core
because it clock-gates the front-end in runahead mode, RA increases the energy
requirement of the core as a result of processing instructions executed in runa-
head mode twice. PRE, in contrast, reduces the energy requirement of the core
because it does not process instructions in the ROB again, and it only (spec-
ulatively) executes instructions that are required to generate prefetches. All
runahead techniques improve reliability, however, RA and RA-buffer achieve
significantly higher gains than PRE. PRE exposes more vulnerable microarchi-
tectural state than RA and RA-buffer because PRE never flushes the ROB and
the other back-end structures occupied by the instructions in the ROB. Over-
all, PRE is a a new runahead execution technique that improves performance,
energy, and reliability of the out-of-order core with a small area overhead of
only 1.24 KB.

5.7 Related Work

A large body of processor microarchitecture research has focused on im-
proving single-thread performance over the past four decades. Some pro-
posals scaled microarchitecture structures for better performance and energy-
efficiency. Examples include the work that dynamically scale operating volt-
age and clock frequency [28, 92, 165] or resize critical structures like issue
queue [29, 63, 87, 108, 163] and caches [4, 5, 14] or throttle the front-end
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pipeline [125]. PRE, however, fits in the category of work that performs some
form of runahead execution, pre-execution or prefetching.

Runahead. PRE improves upon the runahead execution proposed within a
single core [79, 139, 140, 141, 142, 143]. Since traditional runahead execu-
tion cannot prefetch dependent long-latency load instructions, address-value
delta [142] predicts the data value of earlier long-latency load instruction to
enable the execution of future long-latency load instructions. Enhanced mem-
ory controller [80] filters this chain of dependent long-latency load instructions
and executes it at the memory controller; now, the dependent load instruction
can execute as soon as the data is available from DRAM. Because the effective
runahead interval shortens with the increasing size of the ROB, continuous
runahead [81] proposes a tiny accelerator that is located at the last-level cache
controller of a multi-core chip. The accelerator executes the dependency chain
that leads to the highest number of full-window stalls within the core. However,
the area overhead of the accelerator is 2% of a quad-core chip, and possibly
higher for a single core. Prior work have also enabled runahead threads in
an SMT processor [48, 168, 169]. PRE is a runahead technique that does not
require a separate core or runahead thread to pre-execute stalling slices.

Pre-Execution. This category of work executes performance critical fu-
ture instruction slices early in a software-only, hardware-only or a hardware-
software cooperative fashion. Helper threads [102] and speculative precom-
putation [46] are software-only techniques that require a hardware context
for early execution. Hardware-only techniques filter critical instruction slices
from the back-end of a processor for early execution on a separate hardware
context [47, 225]. Waiting instruction buffer (WIB) [115] and continual flow
pipelines (CFP) [195] can execute a large number of independent instructions
by releasing the resources occupied by miss-dependent instructions. BOLT [85]
builds upon CFP but reuses SMT hardware to rename deferred slices and in-
troduces a set of mechanism to avoid useless pre-execution slices. Slipstream
processors [198] also improves performance and reliability by precomputing
demand misses. Dependence graph precomputation (DGP) [9] dynamically
precomputes and executes instructions responsible for memory accesses on a
separate execution engine. Dual-core [220] and explicitly-decoupled architec-
ture (EDA) [65, 66, 107, 160] use two hardware threads where one thread
feeds its output to the other. Hardware-software cooperative techniques in-
volve new instructions, advanced profiling or binary translation to separat-
ing critical instructions slices. Examples of such proposal are DAE [184],
speculative slice execution [224], flea-flicker multi-pass pipelining [16], braid
processing [205] and OUTRIDER [49]. Instruction slices have also been
exploited to improve the energy-efficiency of both inorder and out-of-order
processors [33, 114, 174, 202, 203]. PRE does not require a separate helper
thread, hardware context or support from software for converting demand
misses into hits.

Prefetching. Hardware prefetchers are typically employed in modern
processors [91]. Stride or stream prefetchers are able to prefetch simple data
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access patterns that are independent of other memory accesses [51, 95, 159].
The accesses are either contiguous or separated by a constant stride. Address
correlating prefetchers require larger tables and target pointer-chasing access
patterns [13, 35, 41, 187, 188, 215, 216, 219]. These prefetchers build on the
premise that data structures are typically accessed in the same manner, gener-
ating same cache misses repeatedly. Global History Buffer (GHB) [152] splits
the correlation table into two separate structures and also lowers the harware
overhead. PRE is implemented completely within the core and it is orthogonal
to the hardware prefetching techniques.

5.8 Summary

Hiding and minimizing long memory accesses continues to be a challenging
task for improving performance. Runahead execution improves processor per-
formance by accurately prefetching long-latency memory accesses. When the
instruction window of an out-of-order core is stalled on a long-latency load,
the runahead execution marks the result of the stalling load instruction and its
dependents as bogus and continues to speculatively execute future long-latency
load instructions to prefetch their data closer to the core. All the instructions
starting from the stalling load instructions are re-executed when normal execu-
tion resumes. To reduce the overhead of runahead execution, runahead buffer
stores the chain of instructions leading to the stalling load at the dispatch stage
of the pipeline and executes only this chain after a stalled window for improved
energy-efficiency. We show that the performance of prior runahead proposals
is limited by the high overhead they incur and the limited prefetch coverage
they achieve. Prior proposals release processor state when entering runahead
mode and need to re-fill the pipeline when resuming normal operation. This
operation introduces significant performance overhead. Moreover, prior pro-
posals have limited prefetch coverage due to executing instructions that are
unnecessary to generate prefetches as in the original runahead proposal, or due
to not exploring all possible stalling loads as in runahead buffer.

In this chapter, we propose Precise Runahead Execution (PRE), to alle-
viate the shortcomings of prior runahead proposals. We observe that at the
entry of runahead mode, there are sufficient free PRF and IQ resources to
speculatively execute instructions without having to release processor state.
PRE does not incur the performance overhead of refilling the pipeline when
resuming normal operation, by featuring a novel mechanism to quickly recy-
cle physical registers in runahead mode. Furthermore, PRE tracks all stalling
slices in a dedicated cache, which it executes in runahead mode, i.e., PRE
filters unnecessary instructions and pre-executes all stalling slices to improve
prefetch coverage. In PRE, the instructions executed in runahead mode be-
yond the ROB need to be fetched and decoded again. Therefore, PRE also
optionally buffers these instructions in the EMQ. For a set of representative
memory-intensive benchmarks, PRE improves performance by 38.2% relative
to the baseline out-of-order core, while the best performing runahead tech-
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nique achieves only 20%. PRE also reduces energy consumption by 6.8% while
runahead techniques are energy-neutral relative to the out-of-order core. This
substantial gain in both performance and energy is an outcome of no pipeline
refilling overhead, increased memory-level parallelism, and high prefetch cov-
erage in PRE. All the runahead techniques including PRE improve soft error
reliability of the out-of-order core as a consequence of speculatively executing
instructions. Although the gain in reliability incurred by PRE is lower than
the prior runahead techniques, nevertheless, PRE still reduces the soft error
vulnerability of the out-of-order core by 28%.





Chapter 6

Conclusion

This chapter summarizes the key conclusions drawn from this dissertation.
In addition, the chapter presents several directions for future work.

6.1 Summary

Soft errors pose an imminent threat to the correct working of modern
processors. The charge that distinguishes between the binary states of a
processor bit has reduced to a very small amount as a result of the contin-
uous device scaling trends. Energy particles from cosmic rays and packaging
impurities can easily strike the vulnerable processor bits and result in incor-
rect program execution. Large amount of microarchitectural state inside mod-
ern general-purpose out-of-order cores requires novel solutions to mitigate the
chance of an application encountering a soft error on these big cores. An out-of-
order core is equally vulnerable when executing single-threaded applications or
when integrated alongside cores of different complexity and size, as in heteroge-
neous multicore processors. This dissertation contributes three new techniques
for improving soft error reliability and performance on modern processors.

Scheduling for Optimizing Reliability on Heterogeneous Multicore
Processors. Reliability-aware scheduling, our first contribution, mitigates soft
error vulnerability on heterogeneous multicore processors. We observe that in
addition to performance and energy-efficiency, each core type in an HCMP
also shows different soft error vulnerability characteristics. A big out-of-order
core features substantially more transistors, and is therefore more vulnerable
to soft errors than a small core. On the other hand, a big core executes an
application faster, reducing its exposure to soft errors between launching and
finishing the application. The difference in soft error vulnerability across core
types and applications opens opportunities for reliability-aware scheduling to
improve system reliability. We demonstrate that reliability-aware scheduling
can substantially improve the soft error reliability of multiprogram workloads

125
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running on a heterogeneous multicore processor. When analyzing the ACE
bits on a multicore processor, one of our key observations was the lack of a
suitable metric to assess reliability, since benchmarks running on a multicore
processor impact the performance of one another. Therefore, we also developed
System Soft Error Rate (SSER), a metric for quantifying reliability of multi-
program workloads on (heterogeneous) multicore processors. We evaluate our
scheduler across core count, different frequency settings, and varying degree of
heterogeneity. The impact on performance is low, only 6.3%, for a 25.4% im-
provement in system reliability when running four-program workloads on two
big and two small cores.

Reliability-aware scheduling also reduces power consumption — this is be-
cause an application that executes on a big core for high performance can be
scheduled on a small core for high reliability, thus also reducing power con-
sumption. For systems with a strict performance limit, we noticed that there
is higher improvement in reliability through reliability-aware scheduling as the
performance limit is relaxed. Compared to the diverse runtime behavior of
benchmarks making multiprogram workloads, threads of multithreaded work-
loads show mostly homogeneous behavior. Consequently, there is not a signifi-
cant opportunity to improve reliability for multithreaded workloads. Compared
to the core, the amount of vulnerable state maintained inside on-chip caches is
significantly higher. Therefore, the difference in the number of exposed ACE
bits between big and small cores with equally-sized on-chip caches is relatively
smaller, which lowers the potential gain from reliability-aware scheduling.

Dispatch Halting for Optimizing Reliability on Out-of-Order Cores.
Dispatch halting, our second contribution, reduces soft error vulnerability of
memory-intensive applications on out-of-order cores. Out-of-order cores ex-
pose a large vulnerable microarchitectural state when running applications.
We primarily focus on the memory-intensive benchmarks since the instructions
accessing memory take much longer to leave the pipeline than other instruc-
tions. A memory access typically stalls the processor for (at least) a couple
hundreds of processor cycles. In particular, a long-latency load miss that waits
for memory blocks commit, while the front-end keeps on dispatching instruc-
tions into the back-end; eventually, the ROB and possibly the IQ, Load Queue
(LQ) and Store Queue (SQ) fill up with instructions. This exposes a large
architectural state for a long time window. We find that 67% (and up to 87%)
of the vulnerable correct-path state is exposed due to long-latency load misses
for the memory-intensive workloads in SPEC CPU2006.

Dispatch halting is built on the key insight that it is better to speculate than
execute in normal mode under a memory access. Therefore, dispatch halting
converts instructions following a long-latency load into speculative instructions,
and buffers a copy of those instructions for future execution in normal mode. In
normal mode, the same instructions occupy the processor back-end for a much
shorter duration. We propose two variants, proactive and reactive dispatch
halting. Proactive dispatch halting stops dispatch after a (predicted) long-
latency load miss, and to preserve performance on par with a conventional out-
of-order core, selectively copies loads and branches, along with their producer
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instructions, from EMQ to the back-end for speculative pre-execution to expose
memory-level parallelism (MLP) and resolve mispredicted branches that are
independent of the long-latency load. In reactive dispatch halting, dispatch is
halted when a long-latency load miss blocks commit at the ROB head for a given
number of cycles. The instructions in the ROB turn into speculative execution
mode to preserve MLP, and are flushed when the load is about to return. When
exiting dispatch halting, the instructions buffered in the EMQ are dispatched
into the back-end for normal execution. We demonstrate that dispatch halting
is able to successfully increase the mean time to failure for memory-intensive
benchmarks by a factor of 2× while incurring marginal overheads in terms of
performance, power and chip area.

Precise Runahead Execution for Optimizing Performance on Out-of-
Order Cores. Precise runahead execution, our third contribution, focuses on
single-thread performance on out-of-order cores, and also provides a compar-
ison of the impact of runahead techniques on reliability. We notice that the
performance benefits of prior runahead proposals are limited by their prefetch
coverage and the overheads associated with speculative code execution. Prior
runahead techniques flush the instruction window, execute unnecessary instruc-
tions, and do not exploit the short runahead intervals for generating prefetches.
PRE remedies these shortcomings of prior runahead techniques.

PRE only speculatively pre-executes slices of load instructions that lead to
full-window stalls. These slices are executed within an existing single core with-
out the support of any extra (helper) core or context. PRE does not flush any
of the back-end structures and leverages the available issue queue and physical
register file entries to speculatively execute instructions in runahead mode. We
note that the issue queue entries do not hinder the execution in PRE, how-
ever, physical register file entries must be recycled to continue making forward
progress for the entire duration of a stalled window. Therefore, we devise a
novel mechanism to efficiently recycle physical registers in runahead mode. Ad-
ditionally, PRE optionally buffers decoded micro-ops during runahead mode in
an extended micro-op queue to avoid re-fetching and re-decoding instructions,
thereby saving energy. PRE improves reliability compared to an out-of-order
core as a consequence of speculatively executing instructions beyond the ROB.
However, since instructions in the ROB are not flushed in PRE, the reliability
improvement accrued by PRE is lower than prior runahead techniques. The mi-
croarchitectural enhancements added by PRE over prior runahead techniques
also lead to a substantially higher performance and lower energy requirement.

6.2 Future Work

Reliability-Aware Scheduling on Heterogeneous Processor and Mem-
ory Architectures. Heterogeneous memory architectures are widely adopted
today for high capacity, high bandwidth, and low energy requirements. How-
ever, memory systems comprising of disparate memory technologies like dy-
namic random access memory (DRAM), die-stacked memory or non-volatile
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memory like phase change memory, also exhibit different performance and reli-
ability trade-offs. For example, die-stacked memories provide higher bandwidth
but are less reliable than traditional DRAM. Prior work [75] has improved re-
liability of applications running on hybrid memory system designed with die-
stacked memory alongside traditional DRAM.

Reliability-aware scheduling proposed in this dissertation improves reliabil-
ity on heterogeneous multicores. In a system where both memory and processor
are heterogeneous, one direction for future work is to explore the impact of
optimizing processor reliability on (heterogeneous) memory systems, and, vice-
versa. A novel reliability-aware scheduling mechanism can be designed to im-
prove the overall system reliability to soft errors.

Exploring the Security Implications of Runahead Execution. In an
out-of-order core, the number of instructions executed along a wrong path
after a mispredicted branch or a trap is limited by the ROB size. Runahead
execution extends the window of executed instructions to a larger size than
the ROB, thus increasing the security risk as a result of exploiting aggressive
speculation. If there is a (mispredicted) branch in the ROB that depends
on a stalling load, PRE will go too deep in the dynamic instruction stream,
triggering future memory accesses. These prefetches along the wrong path for
the entire duration of a stalling load can leak a large amount of information,
in a Spectre-like fashion [106].

Similarly, if a load instruction causing a trap depends on a stalling load
(for example, miss-dependent misses), PRE will again fetch a large amount of
data into the caches as a result of executing load instructions that are later
flushed when the (delayed) trap check is performed. This causes security risks
in a Meltdown-like fashion [122]. An interesting direction for future research
is to quantify the amount of wrong-path data prefetched into caches by the
runahead techniques. Furthermore, it can be explored whether the latest tech-
niques (for example, CleanupSpec [173]) are able to mitigate attacks under
aggressive speculation with marginal performance overhead. It is possible that
the runahead techniques require designing even better mitigation techniques
for defense against speculation-based attacks.
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