
Reliability-Aware Scheduling on
Heterogeneous Multicore Processors

Ajeya Naithani

Ghent University, Belgium

Stijn Eyerman∗

Intel, Belgium

Lieven Eeckhout

Ghent University, Belgium

ABSTRACT

Reliability to soft errors is an increasingly important
issue as technology continues to shrink. In this paper,
we show that applications exhibit different reliability
characteristics on big, high-performance cores versus
small, power-efficient cores, and that there is signifi-
cant opportunity to improve system reliability through
reliability-aware scheduling on heterogeneous multicore
processors. We monitor the reliability characteristics of
all running applications, and dynamically schedule ap-
plications to the different core types in a heterogeneous
multicore to maximize system reliability. Reliability-
aware scheduling improves reliability by 25.4% on aver-
age (and up to 60.2%) compared to performance-opti-
mized scheduling on a heterogeneous multicore proces-
sor with two big cores and two small cores, while de-
grading performance by 6.3% only. We also introduce
a novel system-level reliability metric for multiprogram
workloads on (heterogeneous) multicores. We further
show that our reliability-aware scheduler is robust across
core count, number of big and small cores, and their fre-
quency settings. The hardware cost in support of our
reliability-aware scheduler is limited to 296 bytes per
core.

1. INTRODUCTION

As technology shrinks and operation voltages decrease,
the amount of charge in the transistors’ gates reduces,
which increases the probability that a charged element
or radiation can flip the content of a bit, a phenomenon
referred to as a soft error [1, 16, 24]. A higher soft error
probability implies a shorter mean time to failure, or re-
duced dependability. A significant body of work seeks
at improving resilience to soft errors, see for example [2,
3, 16, 20, 25, 30].
To the best of our knowledge, how heterogeneous

chip-multiprocessors (HCMPs) affect reliability is a largely
unexplored topic. HCMPs enable high performance and
high power/energy-efficiency by scheduling applications
to big, high-performance cores versus small, low-power
cores based on the applications’ characteristics [10, 11].
Industry examples of single-ISA heterogeneous multi-
cores include ARM’s big.LITTLE [8], NVidia’s Tegra [21],
and Intel’s QuickIA [6]. Prior work in scheduling for

∗This work was done while at Ghent University.

HCMPs focused on optimizing performance [28], energy
efficiency [15], and power efficiency [17, 31]. However,
no prior work has explored scheduling for reliability on
HCMPs.
An HCMP features different core types, with each

core type exposing different performance and soft er-
ror vulnerability characteristics. A big out-of-order core
features substantially more transistors, and is therefore
more vulnerable to bit flips than a small core. On the
other hand, a big core executes an application faster,
reducing its exposure to soft errors between launching
and finishing the application. The difference in soft
error vulnerability across core types and applications
opens opportunities for scheduling to improve system
reliability.
In this paper, we propose reliability-aware scheduling

for HCMPs. The scheduler monitors reliability on ei-
ther core type for all of the co-running applications, and
schedules the applications to big and small cores for im-
proved overall system reliability. The scheduler adapts
to dynamic phase changes in the workload, while relying
on a novel soft error vulnerability metric, called System
Soft Error Rate (SSER), for quantifying system reli-
ability of multiprogram workloads on (heterogeneous)
multicores. The scheduler leverages a counter architec-
ture to track occupancy in various hardware structures.
The hardware cost for the counter architecture amounts
to 904 bytes per core for the baseline version; the area-
optimized version requires as little as 296 bytes per core.
Reliability-aware scheduling reduces system soft er-

ror rate by 32% on average (and up to 55.6%) for four-
program workloads on an HCMP with two big and two
small cores compared to random scheduling, while yield-
ing similar performance. Compared to performance-
optimized scheduling, soft error rate is reduced by 25.4%
on average (and up to 60.2%), while degrading perfor-
mance by 6.3% only. We show that our scheduler per-
forms well across core count, number of big versus small
cores, and frequency settings.
Overall, we make the following key contributions in

this paper:

• We analyze the difference in reliability character-
istics between big and small cores.

• We show the potential for optimizing reliability
through scheduling on HCMPs.

2017 IEEE International Symposium on High Performance Computer Architecture

2378-203X/17 $31.00 © 2017 IEEE

DOI 10.1109/HPCA.2017.12

397

• We define a novel metric, System Soft Error Rate
(SSER), for assessing reliability to soft errors for
multiprogram workloads on (heterogeneous) mul-
ticores.

• We propose a dynamic online scheduler to optimize
reliability in HCMPs.

The remainder of this paper is organized as follows.
Section 2 analyzes the reliability characteristics in an
HCMP, and shows that there is significant potential for
reliability-aware scheduling. In Section 3, we propose
the SSER metric for quantifying the soft error rate of
multiprogram workloads. In Section 4, we then describe
our reliability-aware scheduler. After detailing our ex-
perimental setup in Section 5, we evaluate and ana-
lyze our proposed scheduler in Section 6. Finally, we
describe related work (Section 7) and conclude (Sec-
tion 8).

2. MOTIVATION

In this section, we first analyze the difference in vul-
nerability to soft errors across core types, and then show
the potential for reliability-aware scheduling using an
offline oracle approach.

2.1 Terminology

Before doing so, we first introduce some terminology.
An ACE bit (architecturally correct execution) is a bit
in the processor that will cause an error during program
execution when flipped, affecting user-visible state (pro-
gram crash or wrong output). We assume each bit in
the processor pipeline holding state of a correct-path
and non-nop instruction to be ACE; i.e., all bits in
the issue queue, load/store queue, reorder buffer, phys-
ical register file, and functional unit holding state of a
correct-path, non-nop instruction are considered ACE.
Structures that improve performance but do not affect
functional correctness (e.g, a branch predictor) do not
contain any ACE bits.
The architectural vulnerability factor (AVF) [16] is

the fraction of ACE bits to the total number of bits
in a structure, core or the whole processor. AVF is
application-dependent, as some applications occupy more
or fewer entries in the core structures, and/or have more
or fewer wrong-path instructions. Soft error rate (SER)
is the average number of errors (on ACE bits) that oc-
cur per unit of time, e.g., 0.01 errors per day, and is the
reciprocal of the mean time to failure (MTTF), e.g.,
100 days. Intrinsic fault rate (IFR) is the probability
for a single one-bit error per second, or, in other words,
the average number of errors per unit of time in a sin-
gle one-bit cell, e.g., 10−6 per day; IFR depends on the
technology and the environment. As such, SER can be
calculated as the number of ACE bits per unit of time
times IFR. Assuming IFR is constant, ACE bit count
is therefore proportional to SER.

2.2 Reliability versus Core Type

It is commonly known that different core types in a
heterogeneous multicore processor exhibit different per-

�
�

��
��
��
��
��
��
��
��
��

�	

�

�
�

��
��
�

�
��
�

�
�

��
��

��
�

��
��
�

��
�
�

��
��
��

��

��
��
��
�

�	
��
�

!�
��
�

�

�
��
"�
��
�

�	
��
�!

	�
��
��
�

��
�
��

��
�
��
�

�	
��
	

�

�

��
	�

�
�

��
��
�!
�

#
��
��

�
�
��
�!

�
�� #
��

��
��
��
��

$
��

�%
&
'&

�
�
��
(
&
)

��
��
�
�

(*
%+
,-

.

/	#)����� 0���

Figure 1: AVF for the SPEC CPU2006 bench-
marks (sorted) on a big out-of-order core.

formance and power characteristics. However, different
core types also exhibit differences in reliability, lead-
ing to an opportunity for improving reliability through
scheduling.
There are basically three contributors to the reliabil-

ity of an application running on a core:

• The size of the structures in the core that hold
architecture state and are required to guarantee
functional correctness. These include the register
file, the functional units, the issue queue, the re-
order buffer (for an out-of-order processor), etc.
The larger these structures are, the higher the
probability for an error in those structures. This
first contributor is thus determined by the design
of the processor.

• The fraction of the architecturally relevant struc-
tures that an application occupies, i.e., AVF. Some
applications occupy only a small fraction of these
structures, or have a lot of non-architecturally rele-
vant instructions (nops, wrong-path instructions).
The smaller the occupied fraction is, the smaller
is the error probability. This second contributor
thus depends on the workload.

• The performance of the application on that core
type. If an application executes faster, it will finish
sooner, and therefore it will be less vulnerable to
errors.

Now consider a big out-of-order core and a small in-
order core in an HCMP. Obviously, the big core has
larger structures than the small core. As a result, a big
core is likely to expose more vulnerable state than an
in-order core. However, the degree of vulnerability also
depends on structure occupancy which is a function of
the application and its performance.

2.3 Application Sensitivity

Applications exhibit varying degrees of sensitivity to
soft error vulnerability. AVF is an insightful metric to
understand an application’s vulnerability to soft errors.
Figure 1 shows (sorted) AVF for the SPEC CPU2006
benchmarks on a big out-of-order core. (See Section 5

398

�-

��-

��-

"�-

1�-

���-

�	

�

�
�

��
��
�

�
��
�

�
�

��
��

��
�

��
��
�

��
�
�

��
��
��

��

��
��
��
�

�	
��
�

!�
��
�

�

�
��
"�
��
�

�	
��
�!

	�
��
��
�

��
�
��

��
�
��
�

�	
��
	

�

�

��
	�

�
�

��
��
�!
�

#
��
��

�
�
��
�!

�
�� #
��

��
��
��
��

$
��

�%
&
'&

�
�
��
(
&
)

��
��
�
�

2(34 25(670 �8%4'70 5439:57483'(//3 /� &5()

Figure 2: Normalized CPI stacks for the SPEC
CPU2006 benchmarks on a big out-of-order
core.

for details regarding our experimental setup.) AVF ac-
counts for all the ACE bits in the processor during the
entire execution. In particular, if an ACE instruction
occupies 64 bits in the ROB for 16 cycles, this amounts
to 1024 ACE bits. This way of measuring incorporates
structure size, occupancy and execution time. The ap-
plications appearing on the right-hand side of the graph
are most sensitive to reliability-aware scheduling, i.e.,
when scheduled on the big core, SER increases signifi-
cantly compared to running on the small core. Applica-
tions appearing on the left-hand size are less sensitive,
i.e., the increase in SER on the big versus small core
is not as big, and thus if given the choice, scheduling
these applications on a big core rather than a small core
will not increase overall system soft error rate as much.
Figure 1 classifies the benchmarks into three categories
based on their big-core AVF: high, medium and low. We
will use this classification for analyzing the performance
of our reliability-aware scheduler in the evaluation sec-
tion.
It is interesting to relate the AVF graph to the nor-

malized CPI stacks shown in Figure 2. A CPI stack
quantifies the fraction of cycles spent doing useful work
(i.e., the base component) plus a number of adders
or components to represent ‘lost’ cycles because of re-
source stalls, branch mispredictions, instruction cache
misses, last-level cache (LLC) misses and main memory
accesses. Note that the benchmarks are ordered the
same way as in Figure 1. The benchmarks on the left-
hand side exhibit low AVF primarily because of their
relatively high front-end miss components. Front-end
miss events, such as branch mispredictions and/or in-
struction cache misses, cause the pipeline to be drained
and hence there is relatively little vulnerable state in
the processor. The benchmarks on the right-hand side
on the other hand have a high AVF because they ex-
hibit high occupancy in various back-end structures of
the pipeline, due to a variety of reasons. Some bench-
marks (e.g., milc) are memory-intensive: a load oper-
ation accessing main memory typically blocks the head
of the reorder buffer, which causes the ROB to fill up,
and which leads to significant ACE state while servic-
ing the memory operation. Other high-AVF bench-

�

��

��

��

��

��

"�

;�

-
�	
��
<�
��
�

�	����+#	���	���

-3'=+�	�� -345+����

Figure 3: Percentage STP loss and SER gain for
an oracle reliability-optimized scheduler relative
to a performance-optimized scheduler for four-
program workloads on an HCMP with two big
cores and two small cores.

marks (e.g., zeusmp) are compute-intensive: high IPC
and high MLP is achieved by having high occupancy
in the various back-end queues. Yet other benchmarks
experience resource stalls in the back-end structures be-
cause of L1 data cache misses, L2 cache misses, lim-
ited ILP (i.e., chains of dependent instructions) which
cause the ROB and issue queues to fill up with in-
structions. Note that there are a number of memory-
intensive benchmarks (e.g., mcf and libquantum) that
exhibit low AVF. This is because these benchmarks suf-
fer from branch mispredictions which lead to a large
number of un-ACE wrong-path instructions in the ROB
underneath memory accesses.
The take-away message from this analysis is that there

exists no simple workload characteristic (e.g., compute-
intensive versus memory-intensive) to determine how
sensitive a workload is with respect to reliability. In-
stead, it depends on how AVF-intensive an applica-
tion is, which is a result of complex interactions among
various workload characteristics. This suggests that
reliability-aware scheduling needs a dynamic mechanism
to monitor an application’s reliability on either core
type in a heterogeneous multicore and adjust the sched-
ule accordingly.

2.4 Oracle Reliability-Aware Scheduling

To quantify the potential of reliability-aware schedul-
ing, we perform the following experiment. We simulate
each application on both core types, and record perfor-
mance and SER. We then consider all combinations of
four applications on a heterogeneous multicore proces-
sor with two big and two small cores. Of the six pos-
sible schedules, we select the one with the highest per-
formance (expressed in system throughput (STP) [7]),
and the one with the lowest total SER. (See the next
section for the metric we use to quantify SER for a
multiprogram workload.) We assume no interference
in shared resources, and consider the performance and
SER numbers from the isolated experiments. This leads
to an oracle offline schedule. Figure 3 shows SER reduc-
tion and performance loss for the SER-optimized sched-

399

ule normalized to the performance-optimized schedule.
Clearly, the reduction in SER is much higher than the
loss in performance, resulting in an average 27.2% re-
duction in SER (and up to 62.8%) while degrading per-
formance by 7% on average. This result demonstrates
the significant potential and motivates our study on
reliability-aware scheduling for heterogeneous multicore
processors.

3. RELIABILITY METRIC FOR

MULTIPROGRAM WORKLOADS

Reliability is commonly quantified using soft error
rate (SER), i.e., the number of errors per unit of time.
This works fine for single-program workloads, but falls
short for multiprogram workloads, as we will explain
in this section; we then subsequently propose a novel
system-level reliability metric for multiprogram work-
loads on (heterogeneous) multicores.
Let us first recap the definition of soft error rate

(SER) for single-program workloads:

SER =
ABC

T
× IFR, (1)

with ABC defined as the total ACE bit count over the
entire execution of a program. In other words, SER
computes the number of ACE bits per unit of time mul-
tiplied by the intrinsic fault rate. As long as we measure
SER for a single-program workload by running (a well-
defined section of) the workload to completion, we can
safely evaluate reliability using SER because the unit of
work is constant.

3.1 System Soft Error Rate

SER breaks down for multiprogram workloads. We
cannot simply add up SER numbers for each of the ap-
plications in a multiprogram workload because some ap-
plications are inherently more vulnerable to soft errors
than others — adding raw SER numbers would give too
much weight to fast running applications and too little
weight to slow running applications. This is similar to
performance metrics for multiprogram workloads, i.e.,
adding plain IPC numbers gives more weight to high-
IPC applications. The fundamental problem here is
that SER does not take into account the impact of per-
formance on the error rate: lower performance makes
the application run longer, increasing the probability
for an error during its execution.
The solution is to weight per-application SER with

the slowdown incurred because of multiprogram execu-
tion. Application slowdown is defined as the execution
time of an application on the (heterogeneous) multicore
divided by its execution time on a reference machine
(e.g., an isolated big core). A slowdown of 1 means
that the application executes equally fast as on the ref-
erence machine; a slowdown of 2 means that the ap-
plication takes twice as long under multiprogram exe-
cution compared to isolated execution. We then define
weighted SER (wSER) of an application in a multiprop-

(a) homogeneous multicore: SSER=2
SER slowdown wSER

benchmark A on big 1 1 1
benchmark B on big 1 1 1

(b) homogeneous multicore: SSER=3
SER slowdown wSER

benchmark A on big 1 2 2
benchmark B on big 1 1 1

(c) heterogeneous multicore: SSER=1.5
SER slowdown wSER

benchmark A on small 1/8 4 0.5
benchmark B on big 1 1 1

Table 1: Examples illustrating the SSER metric.

gram workload as follows:

wSER =
ABC

T
·

T

Tref

· IFR =
ABC

Tref

· IFR, (2)

with ABC and T the ABC and execution time of the
application in the multiprogram workload, respectively;
and Tref the execution time of the application on an iso-
lated reference core (e.g., a big core in a heterogeneous
multicore). In other words, wSER weights the appli-
cation’s SER during multiprogram execution with its
slowdown compared to isolated execution. This is to ac-
count for the fact that if the application runs longer dur-
ing multiprogram execution (which is what you would
expect because of interference in shared resources), it
gets exposed to soft errors for a longer duration.
Summing the weighted SER values for the individual

applications in a multiprogram workload then yields our
novel system-level soft error rate (SSER) metric:

SSER =
n∑

i=1

wSERi =

n∑

i=1

ABC i

Ti,ref

· IFR, (3)

which quantifies the total weighted SER across all the
applications in the multiprogram workload. SSER gives
bigger weight to slow-running applications in the mul-
tiprogram workload mix, and smaller weight to fast-
running applications. This is to account for the fact
that slow-running applications will be exposed to soft
errors for a longer duration, hence we scale their per-
application SER proportionally with their relative slow-
down.

3.2 Illustrative Examples

We now illustrate the intuitive and system-level mean-
ing of SSER using a couple examples, see also Table 1.
Consider a homogeneous multicore with two big cores,
and assume that the two co-running applications do not
interfere with each other, i.e., they both run equally
fast on the homogeneous multicore compared to iso-
lated core execution — example (a) in Table 1. Assume
further that per-application SER is not affected by mul-
tiprogram execution. SSER equals 2 in this case, which
makes perfect sense: the system’s vulnerability is twice
as high on the homogeneous multicore compared to iso-
lated execution because we now have two co-running

400

applications.
Assume now that one application slows down by a

factor of 2 (e.g., because of hardware interference) and
the other application is not affected at all — example
(b) in Table 1. In this case, SSER equals 3, i.e., a
weighted SER of 1 for the application that does not
slow down, plus a weighted SER of 2 for the application
that slows down by a factor two. This makes intuitive
sense because it takes two times as long for the slow
application to get the same amount of work done, and
therefore the slow application is two times as vulnerable.
Consider now a heterogeneous multicore — example

(c) in Table 1. The application that runs on the small
core experiences a slowdown of 4 while its SER reduces
by a factor of 8 compared to running on the big core.
As a result, its weighted SER equals 0.5, i.e., the appli-
cation is slowed down by a factor of 4 but it is 8 times
less vulnerable to soft errors per unit of time, hence
it is only half as vulnerable for getting the work done.
SSER thus equals 1.5. Note that SSER in example (c)
is smaller than for the homogeneous multicore examples
(a) and (b); this is due to the fact that even though the
benchmark running on the small core slows down sub-
stantially, it exposes way fewer ACE bits, which leads
to a net reduction in overall system vulnerability.

4. RELIABILITY-AWARE SCHEDULING

Having demonstrated the potential for reliability-aware
scheduling and having derived the SSERmetric for quan-
tifying system-level reliability, we now describe our sam-
pling-based reliability-aware scheduler for heterogeneous
multicores. We assume that we can measure the perfor-
mance of each application on each core (e.g., the number
of instructions executed during the last scheduler quan-
tum), and the number of ACE bits in each structure
(i.e., ACE bit counter or ABC over the past quantum),
which we both need to compute SSER. We quantify the
hardware overhead for measuring ABC later in this sec-
tion; we start by explaining the scheduling algorithm.

4.1 Scheduling Algorithm

The scheduler starts with an initial sampling phase
to collect performance and ABC information for each
application on each core type. If the number of big
cores equals the number of small cores, this requires
two sampling quanta: putting half of the applications
on a big core and half on a small core in the first sam-
pling quantum, and inverting this schedule in the next
sampling quantum, i.e., the applications running on a
big core are moved to a small core, and vice versa. If the
number of big cores is not equal to the number of small
cores, e.g., 1 big core and 3 small cores, more quanta
are needed to sample each application on each core type
(4 sampling quanta in this example). After this initial
sampling phase, the scheduler follows the algorithm de-
scribed in Algorithm 1.
The algorithm first verifies whether the sampled data

is recent. If an application has run for 10 consecutive
scheduler quanta on the same core type, a sampling
phase is triggered: the application is scheduled on the

Algorithm 1
Sampling-based reliability-aware scheduler.

if No sampling data available, or one or more applications have
run on the same core type for at least 10 scheduler quanta
then

Enter sampling phase: run the application(s) on the core
type for which sampling data is missing or stale for the next
sampling quantum/quanta

else

for all Applications do

Calculate wSER reduction or increase if scheduled on
other core type based on sampled data

end for

while Couples of applications exist where wSER reduction
is larger than wSER increase when switched do

Switch these applications for the next scheduler quantum
end while

end if

Record performance and ABC for each application in the cur-
rent schedule

other core type by switching it (during a short sampling
quantum) with the application that is running for the
most consecutive quanta on the other core type. Like
this, the scheduler ensures that the sample data is up-
to-date, adapting to potential phase changes.
If all applications have recently sampled data for both

core types, the scheduler calculates the weighted SER
(wSER) for each application if we were to schedule them
on the other core type than they are currently sched-
uled on. It then selects the application with the highest
wSER reduction and the application with the smallest
wSER increase, and checks whether switching the two
applications leads to a net overall SSER reduction. If
so, the applications are switched, and the next couple is
checked. If no global SSER reduction can be obtained,
the current schedule is selected for the next scheduler
quantum. After finishing a quantum, the sample data
is automatically updated.
We need to sample both performance and ABC, be-

cause the SSER metric needs both (see Section 3). Sam-
pling ABC requires hardware support to compute oc-
cupancy in all relevant processor structures, as we will
describe in the next section. Sampling performance can
be done by counting the number of instructions exe-
cuted per quantum – we sample at fixed time quanta
(1ms in our setup). This involves a basic performance
counter that is implemented in most recent processors.
To compute an application’s slowdown, we take the big
core as the reference core. Because we have no refer-
ence performance data of an isolated big core execu-
tion, we assume that the sampled big core performance
is a good proxy for reference core performance. Note
that the sampled value is subject to interference in the
shared resources (e.g., shared cache and memory) be-
cause other programs are co-running while sampling.
It is important for a sampling-based scheduler to limit

sampling overhead. On the other hand, we need to sam-
ple for a sufficiently long period of time in order to ob-
tain stable sampling information. This is why we make
a distinction between a sampling quantum and a sched-
uler quantum. We set the scheduler quantum to 1ms

401

�

�

��

��

��

(
7
4+

�
��
+,�
�+
2
���
�	
��
.

����
�

�

��

��

(
7
4+

�
��
+,�
�+
2
���
�	
��
.

����

Figure 4: ABC over time for calculix and povray

when executed in isolation on a big core (on the
left) and as a two-program workload on one big
core and one small core under reliability-aware
scheduling (on the right).

in all of our experiments, and the sampling quantum to
one tenth the scheduler quantum or 0.1ms. All results
in the evaluation section include sampling overhead.
Figure 4 illustrates how our reliability-aware sched-

uler reacts to time-varying execution behavior; each
dot represents ABC per 1ms. The left graph shows
ABC over time for calculix and povray when exe-
cuted in isolation on a big core; the right graph shows
ABC when executed concurrently on an HCMP with
one big and one small core. When run in isolation,
povray experiences almost constant ABC; calculix

on the other hand experiences a big drop in ABC to-
wards the end of its execution. When co-executed on
the HCMP, calculix is scheduled on the small core ini-
tially due to its high big-core ABC compared to povray.
Upon the phase change in calculix, the scheduler re-
sponds by migrating the two applications. The multi-
program workload case also illustrates sampling over-
head: sampling is initiated once every 10 scheduler quanta
for only one tenth of the quantum, so we sample one per-
cent of the time. Sampling incurs the drops and spikes
in the ABC curves for povray and calculix.

4.2 Hardware Overhead

As mentioned in the previous section, computing ABC
in support of our reliability-aware scheduler requires
hardware support. For an out-of-order core, we need
counters for the five major structures, including the
ROB, issue queue, load/store queue, register file, and
functional units. Furthermore, we also need to factor
out wrong-path and NOP instructions. We propose the
following hardware additions. Per ROB entry, we keep
two extra counters: one for recording the dispatch time
of an instruction (i.e., the time it is inserted into the
ROB), and one for recording the issue time (i.e., the
time the instruction starts executing). These counters
should be large enough to cover the maximum number
of cycles an instruction resides in the ROB; we set the
size of the counter to be 12 bits (maximum of 4096 cy-
cles). At the time the instruction commits — which

ensures that it is a correct-path instruction — we can
deduce the time this instruction spent in each of the
architecturally relevant structures:

• The time spent in the ROB is the commit time
minus the dispatch time.

• The time spent in the issue queue is the issue time
minus the dispatch time.

• For a load or store instruction, the time spent in
the load/store queue is the commit time minus the
dispatch time — we model an architecture where
load/store queue entries are allocated at dispatch
time.

• The time the physical output register of an instruc-
tion is ACE is the commit time minus the finish
time (which is the issue time plus its latency).
Note that all architectural registers are ACE all
of the time.

• The time spent in a functional unit is the func-
tional unit’s execution latency.

At the commit stage, where we keep one counter for
each of the five structures, we add the per-instruction
occupation time in each of the five structures to the
respective overall counters. By doing so, the counters
keep track of the accumulated occupancy in the respec-
tive structures. At the end of a quantum, total ABC
is calculated as the accumulated occupancy times the
number of bits per entry — the multiplication is done
by the scheduler in software.
The total hardware overhead amounts to:

• Two 12-bit counters per ROB entry, which amounts
to 3072 bits for an 128-entry ROB.

• One 32-bit counter per profiled structure, which
amounts to 160 bits for 5 counters (with one counter
per structure). 32 bits is sufficient for the quan-
tum size in our setup (2.6 million cycles times at
2.6GHz, and at most 128 entries per structure).

• Additional functional units for calculating occu-
pancy and adding them to the counter. We need
5 adders per instruction in the data path (one per
structure), and since up to 4 instructions can com-
mit per cycle, this requires 20 adders in total.

Total hardware overhead thus equals 3,232 bits plus 20
adders. Extrapolation from [27] suggests that a 32-bit
adder consumes about 1,200 transistors. One SRAM
cell contains 6 transistors, so a rough equivalence rela-
tion is 200 SRAM bits for one 32-bit adder. So, in total
the hardware overhead of this baseline implementation
equals 7,232 bits or 904 bytes.
To reduce the hardware overhead for the big core, the

scheduler can use ACE bit information of the ROB only.
We choose the ROB, because it is a central structure,
containing a lot of useful state, and all other structures
contain a subset of the instructions in the ROB. This is
confirmed by the ACE bit counter (ABC) stacks shown

402

�

�

�

"

1

��

��

��

�	

�

�
�

��
��
�

�
��
�

�
�

��
��

��
�

��
��
�

��
�
�

��
��
��

��

��
��
��
�

�	
��
�

!�
��
�

�

�
��
"�
��
�

�	
��
�!

	�
��
��
�

��
�
��

��
�
��
�

�	
��
	

�

�

��
	�

�
�

��
��
�!
�

#
��
��

�
�
��
�!

�
�� #
��

��
��
��
��

$
��

�%
&
'&

�
�
��
(
&
)

��
��
�
�

(
7
4+

�
��
+,�
�+
'�
���
�	
��
.

592 �����	���+����� �����+����� ��������+���� �	��+����� ��	��+�����

Figure 5: ABC stacks for the out-of-order core.

in Figure 5 for the one-billion instruction workloads con-
sidered in this study. ABC stacks represent the break-
down of the total occupancy of a core in its microarchi-
tecture structures. ROB ABC correlates very well with
overall core ABC (correlation coefficient of 0.99), and
contributes to almost half of the total occupancy of the
core across all benchmarks. In other words, ROB ABC
can serve as a proxy for the overall core ABC, which
allows for correct scheduling decisions to be made using
relative ABC numbers across applications. For this im-
plementation, we only need the dispatch time per ROB
entry (12 bits times 128 entries equals 1,536 bits), one
ROB ACE counter (32 bit) and 4 adders, resulting in
a total of 2,368 bit equivalents or 296 bytes in total for
this area-optimized implementation.
For the small in-order core, we only keep track of the

fetch time. Because all instructions need to go through
all stages, and each stage has a similar buffer for each
instruction, we can calculate the time between fetch and
writeback of each instruction as a way to account for the
number of ACE bits in the pipeline buffers. In addition,
we add the functional unit ACE bits by multiplying the
latency of the operation by the size of the functional
unit. This requires 10 fetch time counters (5 stages
times 2 instructions per stage) at 10 bits per counter
(the time an instruction spends in the in-order core is
usually less than in an out-of-order core), and one 32-
bit total ACE counter (132 bits and two adders in total,
resulting in 532 bit equivalents or 67 bytes).

5. EXPERIMENTAL SETUP

Because there is no way of evaluating architectural
vulnerability on real hardware, we evaluate our sched-
uler using simulation. We use Sniper 6.0 [4] using its
most detailed cycle-level core model. We augment Sniper
with ACE bit counters to count the number of ACE bits
in the different structures. For the big out-of-order core,
we count ACE bits in the ROB, issue queue, load/store
queue, register file and functional units. Similarly, for
the small in-order core, we count ACE bits in the fetch,
decode, register read, execute and write-back stages.
NOPs and wrong-path instructions are assumed non-
ACE. Table 2 shows the configurations of the big out-
of-order and the small in-order core types, as well as the
bit counts per entry in each structure (taken from Nair

Big core Small core
Frequency 2.66 GHz 2.66 GHz
Type out-of-order in-order
ROB size 128, 76 bit/entry -
Issue queue size 64, 32 bit/entry 4, 32 bit/entry
Load queue size 64, 80 bit/entry -
Store queue size 64, 144 bit/entry 10, 144 bit/entry
Pipeline width 4 2
Pipeline depth 8 stages 5 stages

(front-end only) 2 × 76 bit/stage
Functional units 3 int add (1 cyc) 2 int add (1 cyc)

1 int mult (3 cyc) 1 int mult (3 cyc)
1 int div (18 cyc) 1 int div (18 cyc)
1 fp add (3 cyc) 1 fp add (3 cyc)
1 fp mult (5 cyc) 1 fp mult (5 cyc)
1 fp div (6 cyc) 1 fp div (6 cyc)

Register file 120 int (64 bit) 16 int (64 bit)
96 fp (128 bit) 16 fp (128 bit)

L1 I-cache 32KB, ass 4, 2 cyc 32KB, ass 4, 2 cyc
L1 D-cache 32KB, ass 8, 4 cyc 32KB, ass 8, 4 cyc
Private L2 cache 256KB, ass 8, 8 cyc 256KB, ass 8, 8 cyc
Shared L3 cache 8 MB, ass 16, lat 30 cyc
Memory BW 25.6 GB/s, lat 45 ns

Table 2: Big and small core configurations.

et al. [18]). We do not include the cache in the ACE
calculation, because the cache configuration is the same
for both core types, and caches typically include error
detection and correction mechanisms, making them less
vulnerable to soft errors. Our default configuration as-
sumes the same frequency for both core types, but we
also evaluate the impact of having a lower frequency on
the small core than on the big core.
The overhead of moving applications between cores

is modeled as 20μs per migration [8], for saving and
restoring architectural state. This overhead has a neg-
ligible impact on the final results: less than 1% for a
random scheduler that switches every quantum, and less
than 0.5% for the reliability-optimized scheduler.
We create multiprogram workloads from the SPEC

CPU2006 benchmarks. We construct 1 billion instruc-
tion SimPoints [23] for each benchmark. We categorize
benchmarks into three groups, based on their sensitivity
to reliability-aware scheduling, see also Figure 1. The
eight benchmarks with the highest AVF are classified
in the high sensitivity group (H); the eight benchmarks
with the lowest AVF are classified as low sensitivity (L);
and the 13 remaining benchmarks have medium sensi-
tivity (M). For the two-program combinations, we make
6 categories of mixes: HH, HM, HL, MM, ML and LL.
We randomly generate 6 workloads in each category —
but we also make sure that each benchmark occurs at
least once — leading to 36 evaluated workloads. For the
four-program combinations, we take the same 6 mix cat-
egories by doubling the benchmark categories: HHHH,
HHMM, HHLL, MMMM, MMLL and LLLL, and again
generate 6 workloads in each category. We do not dupli-
cate individual benchmarks, i.e., HHHH contains four
different benchmarks. We do another doubling round
for the eight-program combinations.
We evaluate the two-program workloads on an HCMP

consisting of 1 big and 1 small core (denoted 1B1S). The
four-program workloads are evaluated on a symmetric

403

HCMP configuration consisting of 2 big and 2 small
cores (2B2S), and also on asymmetric HCMP configu-
rations: 1 big, 3 small cores (1B3S) and 3 big, 1 small
cores (3B1S). The eight-program combinations are eval-
uated on a symmetric HCMP with 4 big and 4 small
cores (4B4S). The standard quantum time is 1ms. For
each experiment, the longest running application ex-
ecutes its full 1 billion instruction SimPoint, and the
faster running applications are restarted until the end
of the experiment. For the applications that restart, we
record performance and wSER across all repetitions of
that application. The reason is that the longer running
application could enter a new phase near the end of
its execution, causing the schedule to change, which in
its turn impacts the other applications. Taking results
from the first execution only for the repeating applica-
tions would not cover these changes in the schedule.

6. EVALUATION

We evaluate the following three schedulers:

• The random scheduler, for each time slice, ran-
domly selects the applications to run on the big
core(s).

• The reliability-optimized scheduler optimizes SSER
using the algorithm from Section 4.

• The performance-optimized scheduler optimizes sys-
tem throughput (STP) [7] or weighted speedup,
using the same sampling-based scheduling algo-
rithm optimizing for STP rather than SSER.

We first analyze the results for the 2B2S configuration.
Next, we show how our scheduler performs for different
core and application counts, as well as for asymmetric
HCMP configurations. We also show the impact of us-
ing only ROB ACE bits to steer scheduling, the impact
of the sampling period, and the impact of reducing the
frequency of the small core.

6.1 2B2S Results

Figure 6 evaluates system soft error rate (SSER) and
system throughput (STP) for the reliability- and per-
formance-optimized schedulers, normalized to the ran-
dom scheduler, for four-program workloads running on
a 2B2S HCMP. SSER is a lower-is-better metric, while
STP is a higher-is-better metric. Each dot represents a
workload; the workloads are sorted by SSER and STP,
respectively.
The reliability-optimized scheduler significantly and

consistently improves reliability, i.e., SSER reduces by
32% on average and up to 55.6% compared to the ran-
dom scheduler; and by 25.4% on average and by up to
60.2% compared to the performance-optimized sched-
uler. Reliability-aware scheduling effectively determines
which applications are most vulnerable to soft errors
and puts those applications on the small cores to im-
prove overall system reliability.
The performance-optimized scheduler also reduces SSER

over the random scheduler (by 7.3% on average). This
improvement is substantially smaller and, moreover, it

(a) Reliability (SSER)

�>�
�>�
�>"
�>;
�>1
�>?
�>�
�>�
�>�

33
45

+�
	�
�
��
��
��
+�	

+��
��

	�

�	����+#	���	���

+����	�����8	�������� +�����
���� 8	��������

(b) Performance (STP)

�>1

�>?

�>�

�>�

�>�

3'
=+
�	

��
��
��
��
+�	

+��
��

	�

�	����+#	���	���

+����	�����8	�������� +�����
���� 8	��������

Figure 6: System soft error rate (a) and system
throughput (b) for reliability- and performance-
optimized scheduling normalized to random
scheduling for all four-program workloads on an
HCMP with 2 big cores and 2 small cores.

is not consistent, i.e., reliability decreases for a number
of workloads. The reason for the (average) improved
reliability is the apparent correlation between perfor-
mance and reliability.
In terms of performance, the reliability-optimized sched-

uler yields similar performance to the random scheduler
(half of the workloads are worse, half are better, re-
sulting in an average near 0% difference), and degrades
performance by only 6.3% on average (and by 18.7% at
most) compared to the performance-optimized sched-
uler. The performance improvement of performance-
optimized scheduling over random scheduling is in line
with prior work [28].

6.2 Analysis by Workload Category

Figure 7 shows the same results as Figure 6 but now
groups the results per workload category, with the cat-
egories defined based on big-core AVF, see Section 2.3.
The largest improvement in system reliability is ob-
served for the workload category that includes high-
AVF applications and low-AVF applications (see ‘HHLL’).
This does not come as a surprise: the high-AVF ap-
plications are scheduled on the small cores to reduce
overall system reliability, while scheduling the low-AVF
applications on the big cores. The workload categories

404

(a) Reliability (SSER)

�>�

�>�

�>�

�>"

�>1

�>�

�>�

0000 00)) 00//))))))// ////

33
45

+�
	�
�
��
��
��
+�	

+��
��

	�

����	� ����	�����8	�������� �����
���� 8	��������

(b) Performance (STP)

�>�

�>�

�>�

�>"

�>1

�>�

�>�

0000 00)) 00//))))))// ////

3'
=+
�	

��
��
��
��
+�	

+��
��

	�

����	� ����	�����8	�������� �����
���� 8	��������

Figure 7: SSER (a) and STP (b) on a 2B2S sys-
tem per workload category.

with less divergent application behavior (‘HHMM’ and
‘MMLL’) also show substantial improvements in reli-
ability, though not as high as for the ‘HHLL’ cate-
gory. Here, again, reliability-aware scheduling is able
to schedule the applications with high AVF (relative to
the other applications in the mix) on the small cores
and vice versa. For the workload categories with simi-
larly AVF-sensitive applications (all ‘H’, ‘M’ or ‘L’ ap-
plications), we observe modest improvement in reliabil-
ity. The reliability-aware scheduler makes the correct
scheduling decisions in terms of AVF, i.e., it schedules
applications with the highest AVF on the small cores
and vice versa. Nevertheless, this leads to a small im-
provement in system reliability because of the lower sys-
tem performance compared to performance-optimized
scheduling, which tempers the improvement in soft er-
ror rate — remember that SSER weights relative per-
application slowdown.

6.3 Asymmetric HCMPs

The results in the previous sections assume symmet-
ric HCMPs, i.e., the number of big cores equals the
number of small cores. We now evaluate asymmetric
HCMP configurations for four-program workloads: 1
big and 3 small cores (1B3S), and 3 big and 1 small
cores (3B1S), see Figure 8. (Performance is within 7.8%
of the performance-optimized scheduler across the three
configurations.) The most noteworthy observation from

�>�

�>�

�>�

�>"

�>1

�>�

�2�3 �2�3 �2�3

33
45

+�
	�
�
��
��
��
+�	

+��
��

	�

����	� ����	�����8	�������� �����
���� 8	��������

Figure 8: SSER across asymmetric HCMPs with
4 cores in total.

�>�

�>�

�>�

�>"

�>1

�>�

�����+@+�>""+$0� �����+@+�>��+$0�

33
45

+�
	�
�
��
��
��
+�	

+��
��

	�

����	� ����	�����8	�������� �����
���� 8	��������

Figure 9: SSER for the 2B2S system with the
small cores running at different frequency set-
tings.

this graph is that the highest reduction is obtained for
the symmetric HCMP configuration; this is due to the
fact that there are more scheduling opportunities on
the symmetric HCMP than on the asymmetric HCMPs,
i.e., 2 out of 4 applications need to be selected to run
on a small core on the symmetric HCMP (2 combina-
tions out of 4 leads to 6 possibilities) as opposed to one
application to run on the big or small core in the asym-
metric HCMPs (1 combination out of 4 leads to only 4
possibilities). The reduction in SSER on the 3B1S sys-
tem (7.8%) is smaller than on the 1B3S system (27.5%)
because there is only one small core available in the for-
mer system; this limits the scheduling opportunities to
reduce soft error rate by migrating a program to the
small core.

6.4 Lowering Small Core Frequency

So far, we assumed that the big and small cores run
at the same frequency. We now evaluate the robustness
of the reliability-aware scheduler with respect to fre-
quency setting, see Figure 9. To this end, we set small
core frequency to 1.33GHz while running the big core
at 2.66GHz. The bottom line is that reliability-aware
scheduling is robust with respect to frequency setting:
system reliability improves by 29.8% compared to ran-
dom scheduling for the low-frequency small core. This
improvement is slightly smaller compared to the high-

405

�>�

�>�

�>�

�>"

�>1

�>�

�2�3 �2�3 �2�3

33
45

+�
	�
�
��
��
��
+�	

+��
��

	�

����	� ����	�����8	��������
�����
���� 8	��������+,	��+(27. �����
���� 8	��������+,592+(27.

Figure 10: SSER as a function of core count,
assuming symmetric HCMPs and considering
ROB ABC in addition to core ABC.

frequency small core case because lowering the small
core’s frequency also lowers its performance, which in-
creases its weighted SER because of the larger slowdown
compared to big-core performance. This reduces the op-
portunity for reliability-aware scheduling to improve re-
liability compared to the high-frequency small core case.
The performance-optimized scheduler on the other hand
improves reliability more for the low-frequency small
core than for the high-frequency small core (13% ver-
sus 7.3%) compared to random scheduling. This is
a side-effect of the wider gap between big and small
core performance. Performance-optimized scheduling
improves overall system performance compared to ran-
dom scheduling (by 10% on average), which decreases
an application’s weighted SER and improves overall sys-
tem reliability more than random scheduling.

6.5 Changing Core Count

Figure 10 evaluates SSER across two-, four- and eight-
program combinations on symmetric HCMPs (1B1S,
2B2S, and 4B4S). The results are consistent across core
counts: the reliability-optimized scheduler significantly
improves system soft error rate compared to random
scheduling by 29.3%, 32% and 29.8% on average for
1B1S, 2B2S and 4B4S, respectively, while yielding com-
parable performance to the random scheduler, and only
slightly worse performance compared to the performance-
optimized scheduler (within 6.3% on average). This re-
sult shows that our scheduler scales well with core count
and the number of co-running applications.

6.6 ROB ACE Bit Counter

Up to now, we assumed an ACE bit counter for all
structures. To reduce hardware overhead by a factor
of 3, as previously described in Section 4.2, the area-
optimized implementation counts ACE bit information
in the ROB only. Figure 10 shows SSER for reliability-
aware scheduling using core ABC versus ROB ABC.
The relative difference is negligible (31.6% for ROB
ABC versus 32% for core ABC for the 2B2S system),
which justifies the reduction in hardware cost by only
tracking ROB ABC.

(a) Reliability (SSER)

�>�

�>�

�>�

�>"

�>1

�>�

��A+�>� ��A+�>� ��A+�>� ��A� ��A� ��A� ���A�

33
45

+�
	�
�
��
��
��
+�	

+��
��

	�

����	� ����	�����8	�������� �����
���� 8	��������

(b) Performance (STP)

�>�

�>�

�>�

�>"

�>1

�>�

�>�

��A+�>� ��A+�>� ��A+�>� ��A� ��A� ��A� ���A�

3'
=+
�	

��
��
��
��
+�	

+��
��

	�

����	� ����	�����8	�������� �����
���� 8	��������

Figure 11: SSER (a) and STP (b) for a 2B2S sys-
tem while varying the sampling parameters (r, s),
i.e., sampling every r quanta for smilliseconds
(i.e., the sampling quantum).

6.7 Sample Rate

Figure 11 evaluates the impact on system reliabil-
ity and performance while varying the sample rate to
keep the big and small core performance and soft error
rates up to date, see also Section 4.1. Our default sam-
pling period SP is set to 10, i.e., we initiate a sampling
phase every 10 scheduler quanta, and we sample for
a sampling quantum of 0.1milliseconds. Two interest-
ing observations are to be made here. First, reliability
improves for smaller sampling quanta as a result of re-
duced sampling overhead. Second, reliability improves
as we increase the sampling period, i.e., as we sample
less frequently. This suggests that our workloads show
relatively stable time-varying execution behavior. How-
ever, some workloads clearly benefit from having a high
sample frequency. For example, the workload consist-
ing of xalancbmk, soplex, leslie3d and dealII has a 18.4%
reduction in SSER for a sampling period of 10, whereas
SSER reduces by only 10% for a sample period of 100.

6.8 Power Consumption

Changing the schedule in a heterogeneous multicore
obviously affects power consumption. Figure 12 quan-
tifies the impact on chip-level power (including L3) and
total system power (processor plus DRAM). We use
McPAT [12] to quantify power consumption. The bot-

406

�>�
�>�

�>�
�>"

�>1
�>�
�>�

�2�3 �2�3 �2�3 �2�3 �2�3 �2�3

�	
��

��
��
��
+�	

+��
��

	�

����	� ����	�����8	�������� �����
���� 8	��������

���8�����+�	#�� �	���+� ����+�	#��

Figure 12: Impact on chip-level and total system
power consumption.

tom line is that reliability-optimized scheduling reduces
chip-level and system power by 6% and 6.2% on av-
erage, respectively, relative to performance-optimized
scheduling. The reason is that performance-optimized
scheduling puts applications on a big core for perfor-
mance reasons although this may increase power con-
sumption. For example, a memory-intensive application
with high degrees of MLP will be scheduled on the big
core to improve performance [28]; this will lead to an
increase in power consumption. The reliability-aware
scheduler on the other hand schedules this workload on
the small core to reduce soft error vulnerability, also
reducing power.

7. RELATED WORK

We now discuss related work in processor reliability,
as well as recent work in scheduling for HCMPs.

7.1 Monitoring, Modeling and Improving
Reliability

Processor reliability is a growing concern, and a sig-
nificant body of prior work targets decreasing the occur-
rence of soft errors, either through radiation-hardened
circuit design [3], error detection and correction mech-
anisms [20], or architectural techniques [30, 25]. Our
scheduling technique is orthogonal to these approaches,
and provides additional reliability improvements.
Other researchers have studied monitoring and mod-

eling reliability for processor design (e.g., where to add
error detection) and online reliability estimation (e.g.,
to find out when to enable an architectural error re-
duction technique that may also incur a performance
hit). One way to evaluate soft error reliability is through
fault injection, and to monitor what fraction of faults
lead to incorrect program executions [13]. Mukherjee
et al. [16] propose ACE bit analysis as an alternative
to fault injection to evaluate the reliability in architec-
ture studies. They also introduce the concept of AVF.
Biswas et al. [2] show how to measure AVF for address-
based structures. Sridharan and Kaeli [26] propose to
split AVF into PVF (program vulnerability factor) and
HVF (hardware vulnerability factor), which can be de-
termined independently. Other prior work models AVF

through regression on performance counters [29, 14],
or through analytical mechanistic modeling [18]. Nair
et al. [19] develop a methodology for creating AVF-
stressing benchmarks, providing a processor AVF upper
bound.
No prior work has studied reliability characteristics

of HCMPs, or has considered HCMP scheduling as a
way to improve reliability. We are also the first to pro-
pose a system-level reliability metric for multiprogram
workloads.

7.2 Scheduling Heterogeneous Multicores

Kumar et al. [10, 11] advocate single-ISA heteroge-
neous multicores to improve energy and power efficiency.
Many proposals advocate scheduling compute-intensive
applications on the big cores, because they show the
highest performance improvement [5, 9, 22]. Van Craey-
nest et al. [28] show that memory-intensive applications
can also show important performance gains on big cores
if they are able to exploit more memory-level paral-
lelism. Other proposals focus on optimizing energy effi-
ciency [15] or power efficiency [17, 31]. We are the first
to improve reliability on HCMPs through scheduling.

8. CONCLUSION

Applications exhibit different soft error reliability char-
acteristics on big, out-of-order cores versus small, in-
order cores. This provides considerable opportunity to
improve system reliability through scheduling on HCMPs.
We propose a reliability-aware scheduler that samples
the reliability characteristics of running applications on
either core type, and dynamically schedules applica-
tions on big versus small cores to improve overall sys-
tem reliability. We propose a novel system-level reliabil-
ity metric, system soft error rate (SSER), that weights
per-application SER by their relative slowdown to ac-
count for the difference between small and big core
performance. The proposed scheduler leverages a low-
overhead (296 bytes per core) counter architecture to
track hardware occupancy.
Reliability-aware scheduling improves system reliabil-

ity by 25.4% on average and up to 60.2% compared
to performance-optimized scheduling, while degrading
performance by 6.3% only. The proposed scheduler is
robust across core count, number of big versus small
cores, and frequency settings. Moreover, as a side effect,
reliability-aware scheduling reduces power consumption
by 6.2% on average compared to performance-optimized
scheduling.

Acknowledgments

We thank the anonymous reviewers for their construc-
tive and insightful feedback. This work was supported
in part by the European Research Council under the Eu-
ropean Community’s Seventh Framework Programme
(FP7/2007-2013)/ERC grant agreement no. 259295.

407

9. REFERENCES
[1] R. C. Baumann. Radiation-induced soft errors in advanced

semiconductor technologies. IEEE Transactions on Device
and Materials Reliability, 5(3):305–316, Sept 2005.

[2] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S.
Mukherjee, and R. Rangan. Computing architectural
vulnerability factors for address-based structures. In
Proceedings of the 32Nd Annual International Symposium
on Computer Architecture (ISCA), pages 532–543, 2005.

[3] T. Calin, M. Nicolaidis, and R. Velazco. Upset hardened
memory design for submicron CMOS technology. IEEE
Transactions on Nuclear Science, pages 2874–2878, 1996.

[4] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and
L. Eeckhout. An evaluation of high-level mechanistic core
models. ACM Transactions on Architecture and Code
Optimization (TACO), 11(3):28, 2014.

[5] J. Chen and L. K. John. Efficient program scheduling for
heterogeneous multi-core processors. In Proceedings of the
46th Annual Design Automation Conference (DAC), pages
927–930, 2009.

[6] N. Chitlur, G. Srinivasa, S. Hahn, P. K. Gupta, D. Reddy,
D. Koufaty, P. Brett, A. Prabhakaran, L. Zhao, N. Ijih,
S. Subhaschandra, S. Grover, X. Jiang, and R. Iyer.
Quickia: Exploring heterogeneous architectures on real
prototypes. In Proceedings of the High Performance
Computer Architecture (HPCA), pages 1–8, 2012.

[7] S. Eyerman and L. Eeckhout. System-level performance
metrics for multiprogram workloads. IEEE Micro,
28(3):42–53, 2008.

[8] P. Greenhalgh. Big.LITTLE processing with ARM
Cortex-A15 & Cortex-A7: Improving energy efficiency in
high-performance mobile platforms.
http://www.arm.com/files/downloads/big LITTLE Final

Final.pdf, September 2011.

[9] D. Koufaty, D. Reddy, and S. Hahn. Bias scheduling in
heterogeneous multi-core architectures. In Proceedings of
the 5th European Conference on Computer Systems, pages
125–138, 2010.

[10] R. Kumar, K. I. Farkas, N. P. Jouppi, P. Ranganathan, and
D. M. Tullsen. Single-ISA heterogeneous multi-core
architectures: The potential for processor power reduction.
In 36th International Symposium on Microarchitecture
(MICRO), pages 81–92, 2003.

[11] R. Kumar, D. M. Tullsen, P. Ranganathan, N. P. Jouppi,
and K. I. Farkas. Single-ISA heterogeneous multi-core
architectures for multithreaded workload performance. In
Proceedings of the 31st Annual International Symposium
on Computer Architecture (ISCA), pages 64–75, 2004.

[12] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M.
Tullsen, and N. P. Jouppi. McPAT: An integrated power,
area, and timing modeling framework for multicore and
manycore architectures. In Proceedings of the IEEE/ACM
International Symposium on Microarchitecture (MICRO),
pages 469–480, December 2009.

[13] X. Li, S. V. Adve, P. Bose, and J. A. Rivers. Online
estimation of architectural vulnerability factor for soft
errors. In Proceedings of the 35th Annual International
Symposium on Computer Architecture (ISCA), pages
341–352, 2008.

[14] D. Lide, L. Bin, and P. Lu. Versatile prediction and fast
estimation of architectural vulnerability factor from
processor performance metrics. In Proceedings of the 15th
International Symposium on High Performance Computer
Architecture (HPCA), pages 129–140, 2009.

[15] A. Lukefahr, S. Padmanabha, R. Das, F. M. Sleiman,
R. Dreslinski, T. Wenisch, and S. Mahlke. Composite cores:
Pushing heterogeneity into a core. In Proceedings of the
ACM/IEEE International Symposium on Microarchitecture
(MICRO), pages 317–328, 2012.

[16] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and
T. Austin. A systematic methodology to compute the
architectural vulnerability factors for a high-performance
microprocessor. In Proceedings of the 36th Annual

IEEE/ACM International Symposium on Microarchitecture
(MICRO), pages 29–40, 2003.

[17] T. S. Muthukaruppan, A. Pathania, and T. Mitra. Price
theory based power management for heterogeneous
multi-cores. In International Conference on Architectural
Support for Programming Languages and Operating
Systems (ASPLOS), pages 161–176, 2014.

[18] A. A. Nair, S. Eyerman, L. Eeckhout, and L. K. John. A
first-order mechanistic model for architectural vulnerability
factor. In Proceedings of the 39th Annual International
Symposium on Computer Architecture (ISCA), pages
273–284, 2012.

[19] A. A. Nair, L. K. John, and L. Eeckhout. AVF stressmark:
Towards an automated methodology for bounding the
worst-case vulnerability to soft errors. In Proceedings of the
43rd Annual International Symposium on
Microarchitecture (MICRO), pages 125–136, 2010.

[20] M. Nicolaidis. Design for soft error mitigation. IEEE
Transactions on Device and Materials Reliability,
5(3):405–418, 2005.

[21] NVidia. Variable SMP – a multi-core CPU architecture for
low power and high performance.
http://www.nvidia.com/content/PDF/tegra white papers/Variable-
SMP-A-Multi-Core-CPU-Architecture-for-Low-Power-and-
High-Performance.pdf,
2011.

[22] D. Shelepov, J. C. Saez Alcaide, S. Jeffery, A. Fedorova,
N. Perez, Z. F. Huang, S. Blagodurov, and V. Kumar. Hass:
a scheduler for heterogeneous multicore systems. ACM
SIGOPS Operating Systems Review, 43(2):66–75, 2009.

[23] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.
Automatically characterizing large scale program behavior.
In Proceedings of the 10th International Conference on
Architectural Support for Programming Languages and
Operating Systems (ASPLOS), pages 45–57, 2002.

[24] P. Shivakumar, M. Kistler, S. W. Keckler, D. Burger, and
L. Alvisi. Modeling the effect of technology trends on the
soft error rate of combinational logic. In Proceedings of the
International Conference on Dependable Systems and
Networks, pages 389–398, 2002.

[25] N. K. Soundararajan, A. Parashar, and
A. Sivasubramaniam. Mechanisms for bounding
vulnerabilities of processor structures. In Proceedings of the
34th Annual International Symposium on Computer
Architecture (ISCA), pages 506–515, 2007.

[26] V. Sridharan and D. R. Kaeli. Using hardware vulnerability
factors to enhance AVF analysis. In Proceedings of the 37th
Annual International Symposium on Computer
Architecture (ISCA), pages 461–472, 2010.

[27] R. Uma, V. Vijayan, M. Mohanapriya, and S. Paul. Area,
delay and power comparison of adder topologies.
International Journal of VLSI design & Communication
Systems (VLSICS), 3(1), 2012.

[28] K. Van Craeynest, A. Jaleel, L. Eeckhout, P. Narvaez, and
J. Emer. Scheduling heterogeneous multi-cores through
performance impact estimation (PIE). In Proceedings of the
39th Annual International Symposium on Computer
Architecture (ISCA), pages 213–224, 2012.

[29] K. R. Walcott, G. Humphreys, and S. Gurumurthi.
Dynamic prediction of architectural vulnerability from
microarchitectural state. In Proceedings of the 34th Annual
International Symposium on Computer Architecture
(ISCA), pages 516–527, 2007.

[30] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt.
Techniques to reduce the soft error rate of a
high-performance microprocessor. In Proceedings of the
31st Annual International Symposium on Computer
Architecture (ISCA), pages 264–275, 2004.

[31] Y. Zhu, M. Halpern, and V. J. Reddi. Event-based
scheduling for energy-efficient QoS (eQoS) in mobile web
applications. In 21st International Symposium on High
Performance Computer Architecture (HPCA), pages
137–149, 2015.

408

