
Reliability-Aware Runahead

Ajeya Naithani

Ghent University, Belgium

Lieven Eeckhout

Ghent University, Belgium

Abstract—Decreasing voltage levels and continued transistor
scaling have drastically increased the chance of a processor bit
encountering a soft error. We find that the microarchitecture
state in an out-of-order core is vulnerable to soft errors especially
while waiting for data to return from memory. The severity of
the problem is further aggravated by the increasingly large size
of microarchitecture state with every new processor generation.
Prior solutions are ineffective as they incur too high overhead in
terms of chip area, energy consumption and/or performance.

In this paper, we make the observation that runahead execu-
tion, which was originally conceived to improve performance, also
improves soft-error reliability as an unintended side effect. While
the state-of-the-art runahead technique, Precise Runahead Execu-
tion (PRE), leads to substantial performance improvements, relia-
bility is suboptimal still. We propose Reliability-Aware Runahead
(RAR) which substantially improves soft-error reliability over
the current state-of-the-art by rendering the microarchitecture
state non-vulnerable during runahead execution and by initiating
runahead execution early. Across a set of memory-intensive
applications — the primary target for runahead execution —
RAR improves the mean-time-to-failure (MTTF) by on average
4.8× (and up to 35.8×) relative to an out-of-order baseline while
at the same time improving performance by 33.5% on average
(and up to 2.6×). Across a broader set of compute- and memory-
intensive benchmarks, RAR improves MTTF by on average 2.5×
while at the same time improving performance by 11.9% on
average. We explore the runahead design space and conclude
that RAR is the only design point that improves both reliability
and performance by such a significant margin. We find that RAR
is more effective for increasingly large processor architectures,
making RAR an effective microarchitecture technique for future
high-reliability high-performance microprocessors.

I. INTRODUCTION

Technology scaling and reduced operating voltages have

rendered soft errors or transient faults of critical concern

for the reliability of modern-day computer systems [12, 21,

24, 27, 37, 51, 63, 70, 83]. Soft errors due to radiation

and energy particle strikes may result in spurious bit flips

that corrupt the architectural state leading to reduced system

reliability, increased vulnerabilities, unexpected data loss, and

catastrophic system crashes [8, 20, 31, 82]. Memory structures

such as caches and TLBs are commonly protected using error

detection and correction [6, 28, 38, 67]. Core microarchitecture

on the other hand is much more difficult to protect and has

become increasingly vulnerable to soft errors not just because

of technology scaling, but also because of microarchitecture

enhancements. Several of the core structures, such as the

reorder buffer (ROB) and related back-end structures (issue

queues, register file, etc.) have increased dramatically over

the past decade, e.g., the ROB has increased from 128 entries

for Intel’s 2008 Nehalem to 352 entries for the current Ice

Fig. 1: Performance (IPC) versus reliability (MTTF) for

Flushing (FLUSH), Precise Runahead (PRE), traditional runa-

head (TR), and Reliability-Aware Runahead (RAR), relative

to a baseline OoO core for our set of memory-intensive

benchmarks. RAR is the first technique to provide both high
reliability and high performance.

Lake [4, 23, 29]. Larger structures contain more architectural

state and therefore increase the vulnerability to soft errors.

Core microarchitecture vulnerability to soft errors is particu-

larly problematic for memory-intensive workloads. A memory

access typically stalls the processor for (at least) a couple

hundreds of processor cycles. In particular, a long-latency load

miss that waits for memory blocks commit, while the front-end

keeps on dispatching instructions into the processor’s back-

end structures, including the ROB, issue queue (IQ), Load

Queue (LQ) and Store Queue (SQ); eventually, these back-

end structures fill up with instructions. This exposes a large

microarchitecture state for a long period of time to potential

soft errors. We find that on average 70.4% (and up to 87.7%)

of the vulnerable correct-path state is exposed due to long-

latency load misses for a set of memory-intensive SPEC

CPU workloads. The current trend towards OoO cores with

increasingly large back-end structures exacerbates the problem.

Devising techniques that reduce the vulnerability to soft errors

for memory-intensive workloads is thus of critical importance.

Prior work to improve core microarchitecture reliability

can be categorized in three major groups. The first group of

techniques adds extra hardware to detect and possibly correct

soft errors. Unfortunately, these techniques incur significant

overhead. In particular, ECC protection increases cycle time

for latency-sensitive pipeline structures [10, 14, 78]. Parity

detection incurs significant chip area, power and energy over-

heads [14]. The second group engages redundancy (e.g., helper

threads) to duplicate the execution and verify correctness

by cross-checking results [18, 19, 57, 58, 65, 73, 77]. Un-

fortunately, redundant execution leads to substantial runtime

overheads in terms of performance and/or energy consump-

772

2022 IEEE International Symposium on High-Performance Computer Architecture (HPCA)

2378-203X/22/$31.00 ©2022 IEEE
DOI 10.1109/HPCA53966.2022.00062

tion [40, 68, 72]. The third group improves reliability by

limiting or completely removing the microarchitecture state in

the processor’s back-end upon a long-latency memory access

through dispatch throttling [68] or pipeline flushing [80],

respectively. Although this leads to a substantial improvement

in reliability, it comes at the cost of a significant performance

degradation because it limits the amount of memory-level

parallelism (MLP) that an out-of-order core can exploit.

With increasingly large microarchitectural structures and

the ever large processor-memory latency gap, there is an

urgent need to revisit microarchitectural vulnerability to soft

errors. Nonetheless, high performance is indispensable, and

any technique that aims at improving soft-error reliability must

also deliver high performance. Therefore, the goal of this paper

is to devise a microarchitectural technique that does not incur

high hardware cost nor runtime overhead, and yet improves

both soft-error reliability and performance. While surveying

previously proposed microarchitecture techniques, we find that

runahead execution does improve soft-error reliability, as an

unintended benefit, next to significantly improving perfor-

mance. Runahead execution is a microarchitecture technique

that was originally conceived to improve performance by

speculating into the future instruction stream in search for

distant MLP while the processor is stalled on a long-latency

memory access. We find that runahead also improves soft-

error reliability because the speculative state during runahead

execution is, by definition, non-vulnerable. The state-of-the-

art Precise Runahead Execution (PRE) technique [48], while

it delivers high performance, faces two major shortcomings

when it comes to reliability: (i) it initiates runahead execution

too late, and (ii) it maintains vulnerable microarchitecture

state in the processor back-end during runahead to optimize

performance.

In this paper, we propose Reliability-Aware Runahead

(RAR) by enhancing PRE with two critical optimizations. First,

RAR does not maintain any vulnerable microarchitecture state

during runahead execution, i.e., it flushes the back-end when

exiting runahead execution. This renders the microarchitecture

state in the back-end non-vulnerable during runahead execu-

tion. Second, RAR initiates runahead as early as a memory

access blocks commit at the head of the ROB, i.e., it does not

wait until the ROB completely fills up. These optimizations are

synergistic and lead to a significant improvement in reliability

while achieving high performance.

Our evaluation using a set of memory-intensive SPEC

CPU benchmarks demonstrates the effectiveness of Reliability-

Aware Runahead, see also Figure 1. RAR improves mean-

time-to-failure (MTTF) by on average 4.8× (and up to 35.8×)

while improving performance by 33.5% on average (and up

to 2.6×) compared to an OoO baseline core. While PRE

does not improve reliability, traditional runahead (TR) [43] on

the other hand provides only a modest improvement of 1.6×
in reliability. Flushing performs better in terms of reliability

(3.2×) but significantly degrades performance (by 9.3% on

average) relative to the baseline OoO core. Overall, we find

that RAR is the only microarchitecture technique that signif-

icantly improves both soft-error reliability and performance

compared to a baseline out-of-order core. RAR maintains

the high performance delivered by PRE while providing an

average 4.8× improvement in reliability (MTTF) and up

to 35.8×. Across a broader set of compute- and memory-

intensive workloads, we find that RAR outperforms the OoO

baseline by on average 2.5× for MTTF and by 11.9% for

performance.

We make the following contributions in this paper:

• We demonstrate that long-latency memory accesses lead

to vulnerable state being exposed in the back-end of an

OoO core, even if the memory access does not lead to

a full ROB stall. The reliability problem increases with

increasing back-end structure sizes as we are witnessing

in recent commercial designs.

• We analyze how runahead execution techniques improve

soft-error reliability as an unintended side effect, and

we identify major shortcomings in the state-of-the-art

Precise Runahead Execution (PRE) technique in terms

of reliability.

• We propose Reliability-Aware Runahead (RAR) by en-

hancing PRE with two critical optimizations, namely

flush at runahead exit to render microarchitecture state

non-vulnerable, and early start to eagerly initiate runa-

head as soon as a memory access blocks commit.

• We report that RAR significantly improves soft-error

reliability and performance compared to a baseline OoO

core, making it the most effective design point compared

to previously proposed runahead techniques.

• We comprehensively explore the design space of runa-

head techniques, clearly demonstrating RAR’s effective-

ness.

II. MOTIVATION

We first analyze under what circumstances out-of-order

(OoO) processors expose vulnerable state. We then argue why

the problem of soft error vulnerability is worsening as OoO

processors evolve over time.

A. Vulnerable Microarchitectural State in OoO Processors

OoO processors expose a significant amount of microar-

chitectural state that is vulnerable to soft errors, especially

in the back-end of the pipeline. Recall that an OoO core

fetches, decodes and renames instructions in the front-end

of the pipeline, before dispatching them into the back-end.

Dispatch allocates an entry in the reorder buffer (ROB) and

issue queue (IQ), and, depending on the instruction type, in the

load queue (LD) or store queue (SQ). An instruction is issued

to a functional unit (FU) when its operands are ready. When

the instruction is executed, its result is stored in the physical

register file (RF), dependent instructions are woken up, and the

reorder buffer is updated to reflect that the instruction is ready

to commit. An instruction is committed when all instructions

before it in program order have been committed. Upon commit,

all back-end resources allocated by an instruction are released.

773

time
rename
dispatch

issue execute commit

register file

load/store queue

issue queue functional unit

reorder buffer

Fig. 2: Timeline representing the allocation and release of

back-end resources in a OoO core. An instruction allocates
various back-end resources during its execution.

0

5

10

15

20

25

30

co
m

pu
te

as
ta

r

bw
av

e

fo
to

ni
k

gc
c

ge
m

s

lb
m

le
sl

ie

lib
qu

a

m
cf

m
ilc

om
ne

t

pa
re

st

ro
m

s

so
pl

ex

sp
hi

nx

ze
us

A
C

E
 b

its
 (

in
 T

ril
lio

ns
)

ROB IQ LQ RF SQ FU

Fig. 3: ABC stacks for our set of memory-intensive bench-

marks; the figure also shows the average ABC stack for the

compute-intensive benchmarks. Memory-intensive workloads
expose vulnerable state in primarily the reorder buffer, issue
queue, load queue and register file.

Instructions expose microarchitecture state that is potentially

vulnerable to soft errors while occupying resources in the back-

end of the pipeline. Of course, wrong-path instructions do not

expose vulnerable state because those instructions are never

committed. In contrast, correct-path instructions do expose

vulnerable state, and all bits that they allocate expose vulnera-

ble state (i.e., from resource allocation to release). How much

vulnerable state instructions expose depends on their type as

well as their execution flow. To understand how much state a

correct-path instruction exposes, we have to reason about the

different back-end structures, see also Figure 2. Specifically, an

ROB entry allocated by a correct-path instruction is vulnerable

from dispatch to commit. The address and data values in the

load/store queue are vulnerable between execute and commit.

An issue queue entry is vulnerable from dispatch to issue.

Architecture registers are vulnerable throughout the entire

execution; a physical register is vulnerable between execute

and commit, assuming a physical register transitions into an

architecture register upon commit. The number of vulnerable

bits exposed on a functional unit amounts to its bit width times

the number of execution cycles per instruction.

We now quantify the amount of vulnerable state exposed

by an OoO core when executing a set of memory-intensive

SPEC CPU benchmarks, see Section IV for details about

our experimental setup. We use ACE Bit Count (ABC) to

quantify the amount of vulnerable state exposed by an OoO

processor. We provide a formal definition of ABC in Sec-

tion IV-B, but, intuitively speaking, ABC quantifies the total

number of vulnerable bits during the execution of a workload.

An ABC stack breaks down the total number of ACE bits

exposed by the different microarchitectural structures, namely

TABLE I: Four OoO core configurations.
Core-1 Core-2 Core-3 Core-4

ROB 128 192 224 352
Issue queue 36 92 97 128
Load queue 48 64 64 128
Store queue 32 64 60 72
Int registers 120 168 180 256
Fp registers 120 168 180 256

0.0

0.5

1.0

1.5

2.0

2.5

as
ta

r

bw
av

e

fo
to

ni
k

gc
c

ge
m

s

lb
m

le
sl

ie

lib
qu

a

m
cf

m
ilc

om
ne

t

pa
re

st

ro
m

s

so
pl

ex

sp
hi

nx

ze
us

m
p

A
vg

no
rm

al
iz

ed
 A

B
C

Core1 Core2 Core3 Core4

Fig. 4: Normalized ABC for four core configurations with

increasingly large back-end structures. Soft-error vulnerability
increases significantly with back-end processor size.

the ROB, IQ, LQ, SQ, RF and FU, see Figure 3. The

memory-intensive benchmarks are sorted alphabetically and

are contrasted against a set of compute-intensive benchmarks

for which we report the average ABC stack on the far left.

The higher the ABC stack, the higher the number of soft

errors. There are several important conclusions to be deduced

from this result. First, memory-intensive applications tend

to expose significantly more vulnerable state than compute-

intensive workloads. Second, the reorder buffer is responsible

for the bulk of vulnerable state, followed by the issue queue,

load queue and physical register file. The reason is that, as we

later analyze and quantify more deeply, a long-latency memory

access blocks commit at the head of the ROB, which in turn

leads to the processor back-end filling up with instructions,

thereby exposing vulnerable state.

B. Historic Trend Leads to Increased Vulnerable State
It is interesting to analyze how vulnerability to soft errors

has historically evolved as processors have become more

powerful. In particular, OoO processors have increased the

sizes of their back-end resources by a significant margin

over the past decade. For example, the ROB size in recent

Intel processors has increased from 128 (Nehalem) in 2008,

to 192 (Haswell) in 2013, to 224 (Skylake) in 2015, and

352 (Ice Lake) in 2019. IBM’s POWER9 has a 256-entry

ROB [59], and Apple’s recently released M1 core features a

huge 600-entry ROB [5]. To maintain a balanced architecture,

the other back-end structures need to be scaled proportionally

with the size of the ROB. To analyze how the amount of

vulnerable state increases with the size of processor back-end

structures, we now quantify total ABC for the four processor

configurations from Table I, loosely defined following the four

respective Intel processor generations we just discussed.
Figure 4 quantifies vulnerability to soft errors using the

ABC metric for these four processor configurations, normal-

ized to the least powerful configuration, for our set of memory-

774

0

5

10

15

20

25

30

35
as

ta
r

bw
av

e

fo
to

ni
k

gc
c

ge
m

s

lb
m

le
sl

ie

lib
qu

a

m
cf

m
ilc

om
ne

t

pa
re

st

ro
m

s

so
pl

ex

sp
hi

nx

ze
us

A
C

E
 b

its
 (

in
 T

ril
lio

ns
)

OoO core ROB head blocked full-ROB stall

Fig. 5: Impact of memory accesses on ACE bit count (ABC)

on an out-of-order core. A significant fraction of the total ACE
bit count results from long-latency memory accesses filling up
the ROB and blocking commit at the ROB head.

intensive benchmarks. It is clear that soft-error vulnerability

increases with back-end structure size, i.e., the larger the

back-end structures, the higher the vulnerability to soft errors.

Compared to Core-1 with a 128-entry ROB, Core-4 with a

352-entry ROB leads to an average 1.83× higher vulnerability

to soft errors. We note an approximate linear relationship

between back-end structure size and vulnerability. The reason

is that large back-end structures lead to increased accumulated

state being allocated in the processor when commit stalls on

a long-latency memory access at the head of the ROB. The

overall conclusion is that the problem of soft-error vulnera-

bility in OoO cores has become increasingly severe as their

back-end structures have increased in size, urging the need for

a solution.

C. Understanding Vulnerable State

We now dive deeper to understand how vulnerable state

gets exposed in an OoO core. As aforementioned, memory

accesses due to LLC load misses frequently lead to a full-

ROB stall, i.e., the load miss blocks commit at the head of

the ROB, while new instructions are dispatched into the ROB

until the ROB fills up, at which point new instructions can no

longer be dispatched. To assess the impact of full-ROB stalls

on reliability, we perform the following experiment. When a

load instruction that misses in the LLC causes a full-ROB

stall, we start counting the number of ACE bits exposed in all

structures of the pipeline by all in-flight instructions. When the

load returns, we add up the ACE bits exposed in all structures,

and stop the counters. This is the reliability overhead caused

by the LLC miss between the full-ROB stall and the return

of the memory access. We repeat the same process for every

LLC load miss that results in a full-ROB stall. When we add

the number of ACE bits exposed by all such loads, we obtain

the reliability overhead caused by all full-ROB stalls. This

reliability overhead (expressed in ABC terms) is represented

by the ‘full-ROB stall’ bar in Figure 5. Comparing this bar

against the ‘OoO core’ bar, which is the same as the top height

in Figure 3, it is clear that full-ROB stalls are responsible

for a significant fraction of the overall soft-error vulnerability.

For example, for benchmarks such as fotonik and libquantum,

more than 74% of the total ACE bits are exposed during full-

ROB stalls due to memory accesses.

It is further worth noting that accounting for full-ROB stalls

does not account for the total amount of vulnerable state in an

OoO core. For example, for applications such as mcf and lbm,

full-ROB stalls lead to only 20.3% and 4.5% of the total ACE

bits, respectively. A large percentage of ACE bits in these

applications are not exposed during the full-ROB stalls. To

understand this remaining gap in soft-error vulnerability, we

perform another (but similar) experiment. When an LLC load

miss reaches the head of the ROB and blocks commit, we

start counting ACE bits exposed in all pipeline structures by

all in-flight instructions. Unlike the previous experiment, we

start counting ACE bits as soon as the LLC load miss blocks

commit — we do not wait for the ROB to fill up as in the

previous experiment. When the LLC load miss returns, we sum

the ACE bits exposed in all structures, and stop the counters.

This is the reliability overhead caused by the LLC load miss

between blocking and unblocking commit. We repeat the

same process for every LLC load miss that blocks commit

at the ROB head. When we add the number of ACE bits

exposed by all such loads, we obtain the reliability overhead

caused by all memory accesses between ROB blocking and

unblocking. This reliability overhead is represented by the

‘ROB head blocked’ bar in Figure 5. The overall conclusion

is that the vast majority of soft-error vulnerability (on average

70.4% and up to 87.7%) is exposed when the ROB head is

blocked by a long-latency load. The fine subtlety between the

two experiments is important for understanding how to best

improve soft-error reliability. A load instruction that blocks

the head of the ROB does not necessarily lead to a full-

ROB stall. However, a large number of ACE bits are still

exposed to soft errors. We encounter such situations when

an LLC miss is followed by a branch misprediction, front-

end miss or a full issue queue. Benchmarks such as mcf and

gcc have a fairly large number of branch mispredictions in

the shadow of long-latency load misses [45]; lbm is stalled

on a full issue queue for about 20% of the time; soplex and

astar also encounter branch mispredictions and some other

resource stalls in the pipeline [46]. These experiments suggest

that to minimize the vulnerable microarchitecture state under

a long-latency memory access, we need a mechanism that

withholds instructions beyond a blocking long-latency load

from allocating back-end structures.

III. RELIABILITY-AWARE RUNAHEAD

Before presenting Reliability-Aware Runahead (RAR) in

detail, we first revisit prior microarchitecture solutions and

their limitations.

A. Revisiting Prior Solutions
A couple microarchitecture techniques have been proposed

that improve soft-error reliability: flushing and runahead.

1) Flushing: One solution to limit the accumulation of vul-

nerable state upon a memory access is to throttle dispatch [68].

A more aggressive and more effective solution is to flush

the instructions beyond the blocking memory access in the

dynamic instruction stream. Flushing [76, 80] removes the

vulnerable state from the processor back-end for the duration

775

of the memory access. Flushing is an effective technique

to reduce the amount of vulnerable state which leads to

significant improvements in soft-error reliability, as we will

later quantify in Section V.

Flushing to improve soft-error reliability was previously

proposed by Weaver et al. [80] in the context of an in-order

processor. The performance penalty of flushing the pipeline

upon a cache miss is minimal on an in-order processor. In

contrast, flushing incurs a severe performance penalty on out-

of-order processors as it prevents the core from exploiting

memory-level parallelism (MLP) within the ROB by simul-

taneously servicing multiple independent memory accesses.

The performance degradation due to flushing increases with

increasing ROB sizes. Our evaluation shows that flushing the

pipeline when a long-latency memory access blocks commit

at the head of the ROB, degrades performance by 7.6% on

average (and up to 15.8%) for the smallest configuration in

Table I with a 128-entry ROB, to 12.2% on average (and

up to 36.5%) for the largest configuration with a 352-entry

ROB. Overall, although flushing is an effective technique to

improve soft-error reliability, it is not an appealing design

option because of its high performance overhead.

2) Runahead: A well-known microarchitecture technique

to speculate beyond the ROB when stalled on long-latency

memory accesses is called runahead. Although runahead exe-

cution was originally developed to improve performance, we

find that runahead also reduces soft-error vulnerability. We

believe we are the first to report this unintended side effect.

Runahead execution [15, 42, 43] is a speculative microarchi-

tecture technique that prefetches future memory accesses when

the processor is servicing a long-latency load instruction. The

blocking load leads to a full ROB stall as the processor keeps

dispatching instructions into the processor back-end. Runahead

execution mode gets initiated when commit is stalled on a

long-latency memory access and the ROB is completely filled

up. The processor then takes a checkpoint of the architectural

state and starts speculatively executing future instructions be-

yond the ROB. The speculative execution of load instructions

beyond the ROB generates prefetches, which are issued simul-

taneously with the blocking load, thereby exploiting memory-

level parallelism (MLP). When the blocking load returns from

memory, the architectural state of the application is restored to

the point of entry, and the processor resumes normal execution

mode by re-fetching instructions starting from the blocking

load. During normal mode, soon after a runahead interval,

the load instructions are likely to hit in the cache, thereby

improving overall application performance.

Precise Runahead Execution (PRE) [48] is the state-of-the-

art runahead technique that significantly improves runahead

performance through two key innovations. First, PRE makes

the observation that there are typically enough issue queue

entries and physical register file entries available when initiat-

ing runahead mode. PRE leverages the available issue queue

and register file entries to speculate into the future instruction

stream while maintaining the instructions in the full ROB.

This significantly reduces the overhead of transitioning from

runahead mode to normal mode, i.e., the instructions already

present in the ROB at the point of entry into runahead mode do

not need to be re-fetched and re-filled into the processor back-

end. Second, PRE does not execute all instructions beyond

the ROB for prefetching future memory accesses. Instead,

PRE speculatively executes only those instructions that lead

to future memory accesses, i.e., their backward slices or the

chains of instructions that a memory access depends upon. In

other words, PRE is lean as it only executes those instructions

that are needed to generate future memory accesses, in contrast

to traditional runahead which executes all instructions in

the future instruction stream. These innovations enable PRE

to achieve significant performance improvements over prior

runahead techniques, which we confirm in our result set.

Although PRE significantly improves performance, it only

modestly improves reliability compared to a conventional OoO

core, and less so than Flushing. The reason is that PRE

maintains vulnerable microarchitecture state in the processor

back-end structures during runahead mode.

B. Overcoming Shortcomings in Prior Solutions

The overall conclusion from the previous section is that

existing solutions either substantially improve soft-error re-

liability at the cost of performance degradation (in case of

Flushing), or lead to substantial performance improvements

with only modest improvements in reliability (in case of PRE).

Ideally, we would like to devise a microarchitectural technique

that drastically improves soft-error reliability while at the same

time substantially improving performance. To achieve this, we

need to overcome PRE’s two major shortcomings: (i) PRE

initiates runahead execution too late — it waits until the ROB

completely fills up, and hence misses the important case where

a significant amount of vulnerable state is accumulated in the

processor back-end even if the ROB does not fill up — and (ii)

PRE exposes vulnerable state by maintaining the instructions

in the ROB during runahead execution.

C. Reliability-Aware Runahead: Description

Ideally, we want to dramatically reduce the amount of vul-

nerable state in a way that it does not deteriorate performance

(unlike Flushing) and it should initiate speculation as early

as possible to minimize the amount of vulnerable state and

not miss out on the cases where a lot of vulnerable state is

exposed even if the ROB does not fill up (unlike PRE). In other

words, we aim at improving soft-error reliability to a level

that is comparable to or, if at all possible, surpasses Flushing,

while at the same achieving a level of performance that is

comparable to PRE. We achieve this goal through Reliability-

Aware Runahead (RAR) which significantly improves soft-

error reliability over Flushing with the performance of PRE.

RAR takes PRE as a starting point with the goal of main-

taining its level of performance. To minimize the vulnerable

state during runahead execution, we propose two critical

optimizations: (i) flushing and (ii) early-start. We now describe

the two optimizations that RAR implements on top of PRE to

further improve soft-error reliability.

776

1) Flush: As aforementioned, PRE maintains the microar-

chitecture state in the various back-end structures (ROB, issue

queues, register file, etc.) during the course of a runahead

interval. The reason for doing so is to maximize performance.

Indeed, not having to restore the state when exiting runahead

mode to return to normal mode reduces the overhead of

transitioning between execution modes. On the flip side, the

microarchitecture state maintained during runahead is vulner-

able to soft errors, and because memory accesses take on the

order of hundreds of processor cycles, this leads to a significant

reliability degradation.

RAR instead flushes the state in the back-end when exiting

runahead mode, i.e., when transitioning from runahead mode

to normal mode. By doing so, the accumulated state in the

back-end structures during the runahead interval becomes non-

vulnerable to soft errors. Any bit flip that may have occurred

and could have potentially compromised correctness is hence

alleviated, making the looming soft error benign. This leads

to a dramatic improvement in reliability. We find that the

impact on performance is systematic, albeit small and hence

acceptable, as we will quantify in Section V.

Note the subtle but important difference with Flushing as

previously proposed by Weaver et al. [80], which flushes the

microarchitecture state as soon as a cache miss is detected and

the memory access is initiated. This strategy significantly hurts

performance as it does not expose any MLP. RAR in contrast

flushes the back-end pipeline when the memory access comes

back and has been serviced. This enables the core to exploit

MLP. In runahead terminology, Flushing flushes the pipeline

before the runahead interval while RAR flushes the pipeline

after the runahead interval.

2) Early Start: In Section II-C, we made the observation

that OoO processors accumulate a lot of vulnerable state

even if a long-latency load does not lead to a full-ROB stall.

From that perspective, PRE initiates the runahead interval too

late as it waits until the ROB is completely filled up. This

suggests that it may be beneficial from a reliability perspective

to initiate runahead earlier, e.g., as soon as the long-latency

load blocks commit at the ROB head. (The next section

describes how we determine that the blocking load is a long-

latency LLC miss.) Note that the early-start condition does

not affect reliability for those cases where the ROB does fill

up because RAR flushes the pipeline anyways when exiting

runahead mode, thereby making the microarchitecture state

non-vulnerable. In contrast, the early-start condition has a

major impact on reliability for those cases where the ROB

does not fill up. By initiating runahead in even those cases —

and thus flushing the back-end when exiting runahead mode in

even those cases — renders the accumulated state in the back-

end non-vulnerable, which leads to a significant improvement

in soft-error reliability.

Note that the early-start condition will trigger runahead

execution more frequently and, from a performance perspec-

tive, too frequently and therefore unnecessarily. Its impact on

performance remains to be seen and is subject to evaluation.

Performance may improve for two reasons. First, an early start

Fig. 6: RAR-enhanced out-of-order pipeline.

may anticipate a full-ROB stall in the future and therefore

initiate runahead execution sooner, which may enable prefetch-

ing deeper into the future. Second, an early start will initiate

runahead at a point in time at which there are more back-end

resources available to use during the runahead interval, which

may also contribute to a deeper runahead interval. On the flip

side, initiating runahead more frequently may also degrade

performance because of increased overhead. This will lead to

a performance degradation in those cases where the ROB does

not fill up. Overall, we find that the early-start condition is

performance-neutral while significantly improving reliability,

as we will quantify in Section V.

D. Reliability-Aware Runahead: Implementation Details

We now dive deeper into RAR’s implementation, see also

Figure 6. RAR only adds minimal hardware overhead over

PRE. More specifically, a 4-bit countdown timer is added at

the head of the ROB. This counter is set to 15 (i.e., ‘1111’)

whenever a new instruction becomes the oldest instruction in

the ROB. The counter is decremented each cycle that the same

instruction resides at the ROB head. When the counter reaches

zero, runahead mode is triggered. The countdown timer is a

low-cost implementation to gauge whether the load at the ROB

head is indeed a long-latency load that misses in the LLC. In

our setup, the tag lookup times of the L1, L2 and LLC amount

to 1, 3 and 10 cycles, respectively. Hence, an instruction that

resides at the ROB head for more than 14 cycles is likely to

be an LLC miss. An alternative implementation in which the

LLC would notify the core upon an LLC miss would involve

a dedicated signal from the LLC to the core. The countdown

timer is a low-cost core-local implementation.

Figure 6 further illustrates RAR’s operation assuming that

a long-latency load L1 blocks commit. When the countdown

timer expires, we save L1’s PC and checkpoint the register

allocation table (RAT), and the processor enters into runahead

mode (marked as ‘RA-Start’ in Figure 6). The partly filled

ROB is ‘freezed’, meaning that we do not allocate ROB entries

in runahead mode. Instead, we only execute the chains of

instructions leading to long-latency loads. For our example,

this includes loads L2 and L3 and their producers A2 – B2 and

A3 – B3, respectively. The identification of long-latency loads

and their backward slices, as well as the allocation of physical

registers is done through PRE’s stalling slice table (SST) and

precise register deallocation queue (PRDQ), respectively [48].

777

TABLE II: Baseline out-of-order core.

Frequency 2.66 GHz
Type out-of-order
ROB size 192
Issue queue size 92
Load queue size 64
Store queue size 64
Pipeline width 4
Pipeline depth 8 stages (front-end only)
Branch predictor 8 KB TAGE-SC-L
Functional units 3 int add (1 cyc), 1 int mult (3 cyc),

1 int div (18 cyc), 1 fp add (3 cyc),
1 fp mult (5 cyc), 1 fp div (6 cyc)

Register file 168 int (64 bit)
168 fp (128 bit)

SST size 128 entry, fully assoc, 6r 2w
PRDQ size 192 entry, 4r 4w
L1 I-cache 32 KB, assoc 4, 2 cyc
L1 D-cache 32 KB, assoc 8, 4 cyc,

20 outstanding misses (MSHRs)
Private L2 cache 256 KB, assoc 8, 8 cyc
Shared L3 cache 1 MB, assoc 16, lat 30 cyc
Memory DDR3-1600, 800 MHz

ranks: 4, banks: 32
page size: 4 KB, bus: 64 bits
tRP-tCL-tRCD: 11-11-11

Runahead mode ends when the blocking load returns

(marked as ‘RA-End’ in Figure 6). RAR flushes the entire

back-end, including all the instructions in the ROB. Therefore,

soft errors encountered by all the instructions in the back-end

during runahead mode are simply discarded. We restore the

RAT to the point of entry into runahead mode, and redirect

fetch to the restored PC of the blocking load. The processor

is now back in normal mode.

IV. METHODOLOGY

We now describe the methodology used in this work to

evaluate RAR.

A. Experimental Setup

We evaluate RAR using the most accurate, hardware-

validated core model in the Sniper 6.0 simulator [13]. We

augment Sniper with ACE bit counters to account for bits

exposed in the ROB, IQ, LQ, SQ, functional units and register

file. NOPs and wrong-path instructions are considered un-ACE.

The configuration parameters of the simulated (baseline) out-

of-order core are provided in Table II; we model the same

baseline core configuration as Precise Runahead Execution

(PRE) [48] for fair comparison. We assume a total of 20 miss-

status holding registers (MSHRs) at the L1 D-cache level. The

branch predictor is an 8 KB TAGE-SC-L from the 2016 Branch

Prediction Championship [62]. We do not assume a hardware

prefetcher in our baseline setup, however, we evaluate the

impact of hardware prefetching in Section V-F.

We consider all the memory-intensive workloads from both

the SPEC CPU2006 and CPU2017 suites, by creating their

representative 500 M instruction SimPoints [64]. All memory-

intensive benchmarks have more than 8 LLC misses per

thousand instructions (i.e., MPKI > 8) on the baseline OoO

core. All benchmarks with an MPKI of less than 8 from SPEC

2017 suite are considered to be compute-intensive.
To quantify the impact on reliability, we need to know the

sizes of the various hardware structures. Since it is impossible

to find the size of each entry of different pipeline structures

for commercial processor implementations, we model our

baseline core microarchitecture following the sizes reported in

Table III, which provides a justified balance among the various

pipeline structures. We assume that the instruction fetch unit

maintains a table that tracks all in-flight instructions between

fetch and commit. This table maintains the PCs of all in-flight

instructions, which incurs less hardware cost and state than

propagating PC information throughout the pipeline. Because

PC information is needed to index the branch predictor and

to guarantee precise exceptions, each ROB entry holds a 12-

bit index to this PC table. Overall, we assume that an entry

in the ROB takes 120 bits in total, an issue queue entry

takes 80 bits, a load queue entry takes 120 bits and a store

queue entry takes 184 bits. Integer registers incur 64 bits

while floating-point registers incur 128 bits, see Table II. All

integer and floating-point functional units are 64 and 128

bits wide, respectively. We assume that caches, TLBs, the

architectural register file, and the register renaming logic and

RAT checkpoints are protected using error detection and/or

correction codes [6, 17, 28, 38, 67].

B. Soft Error Vulnerability: Metrics
A number of metrics and methodologies have been reported

and used in the literature to evaluate a processor’s vulnerability

to soft errors. We use Architecturally Correct Execution (ACE)
analysis proposed by Mukherjee et al. [41] to assess soft-error

reliability in our simulation infrastructure.1 An ACE bit is a

bit that must be correct for the correct execution of a program

on a processor. ACE cycles is the total number of cycles a bit

must be ACE. For a program running on a processor with N
bits, the total ACE Bit Count (ABC) is expressed as:

ABC =
N

∑
i=1

ACEi (1)

where ACEi represents the ACE cycles for bit i.
Architectural Vulnerability Factor (AVF) is the fraction of

the total number of processor bits exposed by correct-path

instructions. AVF can be expressed as:

AVF =
ABC

N ×T
(2)

with T the execution time of the workload. Soft Error Rate

(SER) is closely related to AVF, and is defined as the total

number of errors on ACE bits encountered by a program per

unit of time.
Mean Time To Failure (MTTF) and Failure In Time (FIT)

rate are widely used metrics in the reliability literature. Mean
Time To Failure (MTTF) is the inverse of FIT rate:

MTTF =
1

FIT
. (3)

1As an alternative to ACE analysis, an elaborate fault injection campaign
might report lower absolute vulnerability numbers [52], but we believe that
the overall conclusions and insights would be similar.

778

TABLE III: Number of bits per entry in the ROB, issue queue, load queue and store queue.
Structure Details Bits/entry
ROB PC index: 12 bits; mapping: arch(8), phy(8), oldphy(8), 2 src, 1 dest, total = 24 × 3 = 72 bits; 120

LQ and SQ index: 14 bits; ld, st, int, fp completion status, exception bits, marker bits; other control info
Issue queue 2 src, 1 dest reg tags: 24 bits; LQ and SQ index for address generation: 14 bits; 80

micro-op: 32 bits; other control info
Load queue VA and PA for memory-ordering violations: 96 bits; ROB ID: 8 bits; SQ index: 7 bits; 120

fault bits; other control info
Store queue Everything in load queue plus 64-bit data 184

FIT rate is defined as the total number of errors experienced

in a billion device hours. The relation between FIT rate and

AVF is defined as [39, 80]:

FIT = AVF× raw error rate (4)

where raw error rate is determined by the circuit technology

and environment. In other words, the effective number of

errors is the raw error rate derated by AVF.
In this paper, we quantify soft-error vulnerability using

MTTF and ABC. The reason for reporting both metrics is

because they report reliability from a system and architecture

perspective, respectively. MTTF is a system-level metric that

quantifies the average time between two failures due to soft er-

rors. MTTF is a higher-is-better metric. ABC is an architecture-

level metric that quantifies the total number of bits exposed by

the architecture during the execution of a particular workload

(fixed unit of work). ABC is a lower-is-better metric. We report

normalized MTTF and ABC metrics relative to our baseline

OoO core, which makes the reliability analysis independent of

a particular technology and environmental setting.

V. EVALUATION

We compare the following five configurations:

1) OoO: Our baseline out-of-order core from Table II.

2) FLUSH: The Flushing mechanism proposed by Weaver

et al. [80] flushes the pipeline when a memory access

blocks the head of the reorder buffer. The pipeline is

refilled when the blocking memory access returns.

3) PRE: Precise Runahead Execution proposed by Naithani

et al. [48] initiates runahead execution upon a full-

window stall, and executes only useful instructions for

generating future memory accesses without flushing the

ROB and other back-end structures.

4) RAR-LATE: Reliability-Aware Runahead with Late Start
initiates runahead execution upon a full-ROB stall, just

like PRE. The pipeline is flushed when the memory

access that blocks commit returns.

5) RAR: Reliability-Aware Runahead is the microarchitec-

ture mechanism proposed in this work. RAR initiates

(PRE-style) runahead execution when a memory access

blocks the head of the ROB for at least 15 cycles, and the

instructions in the ROB and back-end structures during

the runahead interval are flushed when the blocking

memory access returns.

We use Mean-Time-To-Failure (MTTF) and ACE Bit Count

(ABC) to quantify soft-error reliability. We use useful Instruc-

tions committed Per Cycle (IPC) to quantify performance.

We use arithmetic mean to compute average ABC and MLP

numbers; harmonic mean for IPC; and geomean for MTTF,

following the methodology by John [30].

A. Overall Reliability and Performance

We first provide a general overview of RAR against our

baseline in terms of reliability and performance. Figure 7

quantifies the soft error reliability for all techniques across

our set of memory- and compute-intensive benchmarks. Over-

all, RAR improves MTTF and ABC by 2.5× and 51.5%,

respectively, relative to the baseline OoO core. The memory-

intensive benchmarks benefit most and witness a substantially

higher improvement in reliability: RAR improves MTTF and

ABC by 4.8× and 81.4%, respectively. The compute-intensive

benchmarks do not frequently access memory, and therefore

the gain in reliability for the compute-intensive benchmarks

is, while still significant, more modest: RAR improves MTTF

and ABC by 1.5× and 28.7% on average, respectively.

Figure 8(a) evaluates performance for all techniques. Across

the complete set of benchmarks, RAR improves performance

by 11.9%. Performance improves significantly for the memory-

intensive benchmarks, by 33.5% on average, while the

compute-intensive benchmarks are minimally affected (0.4%

performance improvement). The key takeaway message is that

RAR significantly improves both reliability and performance

for the memory-intensive benchmarks.

We now dive deeper and compare the various runahead tech-

niques in more detail. We do so while focusing on the memory-

intensive benchmarks as they are the primary beneficiary of

runahead execution.

B. Reliability Analysis

Flushing is an effective technique to improve reliability, see

Figure 7: MTTF and ABC improve by 3.2× and 61.4% on

average relative to the OoO baseline, respectively. Flushing

removes all vulnerable state from the processor back-end as

soon as a memory access blocks commit. Unfortunately, flush-

ing substantially degrades performance, as we will quantify

later, making it a sub-optimal design point.

PRE also improves ABC compared to an OoO core, how-

ever, less so than Flushing, i.e., PRE improves ABC by

28.3% on average. PRE maintains the microarchitecture state

in the processor back-end during runahead mode, thereby

exposing vulnerable state. However, by speculating into the

future instruction stream, PRE also improves performance and

instructions speculatively executed during runahead mode do

not expose vulnerable state. As a result of improving both

ABC and performance, there is no net improvement in MTTF

for PRE.

779

(a) MTTF

0

2

4

6

8

10

12

as
ta

r

bw
av

e

fo
to

ni
k

gc
c

ge
m

s

lb
m

le
sl

ie

lib
qu

a

m
cf

m
ilc

om
ne

t

pa
re

st

ro
m

s

so
pl

ex

sp
hi

nx

ze
us

m

co
m

p

m
em av

g

no
rm

al
iz

ed
 M

T
T

F

OoO FLUSH PRE RAR-LATE RAR

(b) ABC

0.0

0.2

0.4

0.6

0.8

1.0

as
ta

r

bw
av

e

fo
to

ni
k

gc
c

ge
m

s

lb
m

le
sl

ie

lib
qu

a

m
cf

m
ilc

om
ne

t

pa
re

st

ro
m

s

so
pl

ex

sp
hi

nx

ze
us

m

co
m

p

m
em av

g

no
rm

al
iz

ed
 A

B
C

OoO FLUSH PRE RAR-LATE RAR

Fig. 7: Evaluating reliability: (a) MTTF and (b) ABC.

Reliability-Aware Runahead significantly improves reliability.

Reliability-Aware Runahead with Late Start (RAR-LATE)

flushes the back-end pipeline when returning from runahead

mode to normal mode, which removes the vulnerable state

in the pipeline. This leads to an average 2.5× and 51.9%

improvement in MTTF and ABC compared to PRE, respec-

tively. Note that RAR-LATE outperforms Flushing in terms

of reliability: RAR-LATE improves MTTF and ABC by 2.5×
and 65.5% on average compared to the baseline OoO core,

respectively. Flushing the back-end pipeline when exiting the

runahead interval makes all the state exposed during the

runahead interval non-vulnerable to soft errors.
Reliability-Aware Runahead (RAR) further improves relia-

bility by entering runahead mode earlier. As mentioned before,

even when a memory access does not lead to a full ROB,

a significant amount of vulnerable state is accumulated and

exposed to soft errors. RAR eliminates the exposition of

vulnerable state in these cases. Relative to PRE, RAR triggers

runahead mode 2.3× more often. Overall, RAR is the best

performing mechanism, improving MTTF and ABC by 4.8×
(and up to 35.8× for mcf) and 81.4% on average, respectively,

compared to the baseline.

C. Performance Analysis
Flushing leads to a significant performance degradation

by 9.3% on average and up to 21.9% (libquantum), see

Figure 8(a). The reason is that Flushing significantly reduces

the amount of MLP exposed compared to an OoO core, see

Figure 8(b). An OoO core can find independent memory

accesses within the entire ROB. Flushing on the other hand re-

duces the opportunity to exploit MLP by flushing the pipeline.
PRE is the best performing mechanism as it speculatively

searches for distant MLP beyond the ROB upon a full-ROB

(a) Performance (IPC)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

as
ta

r

bw
av

e

fo
to

ni
k

gc
c

ge
m

s

lb
m

le
sl

ie

lib
qu

a

m
cf

m
ilc

om
ne

t

pa
re

st

ro
m

s

so
pl

ex

sp
hi

nx

ze
us

m

co
m

p

m
em av

g

no
rm

al
iz

ed
 IP

C

OoO FLUSH PRE RAR-LATE RAR

(b) Memory-Level Parallelism (MLP)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

as
ta

r

bw
av

e

fo
to

ni
k

gc
c

ge
m

s

lb
m

le
sl

ie

lib
qu

a

m
cf

m
ilc

om
ne

t

pa
re

st

ro
m

s

so
pl

ex

sp
hi

nx

ze
us

m

co
m

p

m
em av

g

no
rm

al
iz

ed
 M

LP

OoO FLUSH PRE RAR-LATE RAR

Fig. 8: Evaluating performance: (a) IPC and (b) MLP.

Reliability-Aware Runahead improves performance and MLP
to a level that is comparable to the best performing PRE
technique.

stall. At the same time, PRE maintains the microarchitecture

state in the processor’s back-end structures during the runa-

head interval, which limits the overhead when transitioning

from runahead mode to normal mode. We report an average

38% performance improvement over the OoO baseline, and

up to 2.5× (libquantum), in line with prior work [48].

RAR-LATE leads to a slight and consistent performance

degradation compared to PRE. The reason is the overhead

incurred by flushing the microarchitecture state when transi-

tioning from runahead mode to normal mode. This overhead is

limited to an average 4.2% performance hit, and at most 8.0%

(leslie3d) relative to the PRE. Overall, RAR-LATE provides

an average 32.7% performance improvement over the baseline,

and up to 2.4× (libquantum).

RAR degrades performance for some benchmarks compared

to RAR-LATE, while improving performance for others. RAR

achieves higher performance than RAR-LATE for benchmarks

for which initiating runahead early is beneficial by exploiting

more MLP, see for example fotonik, gems and milc. RAR

degrades performance relative to RAR-LATE for benchmarks

for which a memory access does not lead to a full-ROB stall,

see for example libquantum and roms. On average though, we

find that RAR only slightly degrades performance compared to

the state-of-the-art PRE. Overall, RAR improves performance

by 33.5% on average and up to 2.6× (fotonik) compared to

the baseline.

D. Runahead Variants

We now perform a systematic exploration of the runahead

design space. To do so, we consider three more configurations

780

TABLE IV: Runahead variants.
Early Flush Lean

TR �
TR-EARLY � �
PRE �
PRE-EARLY � �
RAR-LATE � �
RAR � � �

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0
4.5
5.0

MTTF

OoO FLUSH
TR TR-EARLY
PRE PRE-EARLY
RAR-LATE RAR

0.0

0.2

0.4

0.6

0.8

1.0

ABC

OoO FLUSH
TR TR-EARLY
PRE PRE-EARLY
RAR-LATE RAR

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

IPC

OoO FLUSH
TR TR-EARLY
PRE PRE-EARLY
RAR-LATE RAR

Fig. 9: MTTF, ABC and IPC for the various runahead vari-

ants normalized to the OoO core. RAR achieves the highest
improvement in soft-error reliability while achieving perfor-
mance similar to the state-of-the-art PRE runahead technique.

beyond the ones already included in the analysis:

• TR: Traditional runahead execution, as proposed by

Mutlu et al. [43], triggers runahead execution upon a full-

ROB stall. TR flushes the pipeline when returning from

runahead mode to normal mode. We include the following

two enhancements:

– There are no overlapping runahead intervals.

– Runahead is only triggered for load instructions issued

to the memory hierarchy less than 250 cycles before

a full-window stall; this condition ensures that the

runahead is not triggered for short runahead intervals.

• TR-EARLY: This is similar to TR except that runahead

mode is triggered when long-latency load blocks the head

of the ROB, instead of waiting for a full-ROB stall.

• PRE-EARLY: Similar to PRE but the runahead mode

is initiated as soon as a memory access blocks the ROB

head. The instructions already present in the ROB are not

flushed, as in PRE.

Table IV summarizes the six runahead variants in terms of

(i) whether runahead mode is initiated early or not, i.e., early

means as soon as a memory access blocks commit versus when

the ROB completely fills up; (ii) whether microarchitecture

state is flushed or not at the end of a runahead interval; and

(iii) whether runahead execution is lean or not, i.e., whether

it executes all instructions in the future stream or only those

instructions that are useful to generate future memory accesses.

PRE executes only useful instructions in runahead mode, in

contrast to the traditional runahead techniques. The traditional

runahead techniques flush the pipeline in contrast to PRE.

RAR initiates runahead early, flushes the pipeline upon its

return, while executing only useful instructions.

Figure 9 compares these six runahead variants against our

baseline OoO core as well as Flushing, in terms of their

average MTTF, ABC and IPC. This result confirms that RAR

Fig. 10: Impact of back-end resource scaling on ABC. RAR
closes the widening reliability gap with increasing back-end
structure sizes.

is indeed the most compelling design point. The traditional

runahead techniques (TR and TR-EARLY) are suboptimal

compared to RAR. Performance is inferior because it executes

all instructions as opposed to only useful instructions under

PRE during runahead mode. Moreover, flushing microarchi-

tecture state at the end of a runahead interval incurs runtime

overhead. Reliability is comparable to Flushing as the TR-

techniques also flush the pipeline at the end of the runahead

interval. Finally, PRE-EARLY does not noticeably improve

reliability over PRE because, although it initiates runahead

early, it does not flush vulnerable state upon a long-latency

memory access. Overall, we conclude that RAR achieves

the highest reliability — significantly surpassing Flushing —

while achieving a level of performance that is close to the best

performing runahead technique which is PRE.

E. Sensitivity Analysis
As mentioned in Section II-B, the amount of vulnerable

state exposed in an out-of-order core increases with increasing

back-end structure sizes. We now explore how effective RAR

is as we increase the ROB, issue queue, load/store queue

and physical register file sizes. To this end, we consider the

four core configurations from Table I and report ABC as a

function of ROB size, see Figure 10. The OoO curve is the

same as the average bars in Figure 4; all data points are

normalized to the Core-1 OoO baseline. This result clearly

shows that RAR closes the widening reliability gap with

increasing back-end structure size, making RAR an effective

microarchitecture technique for future high-reliability high-

performance microprocessors.

F. Hardware Prefetching
We now evaluate RAR on architectures that feature an

aggressive stride-based hardware prefetcher with up to 16

streams at the LLC level or across all three cache levels. Such

enhanced architectures eliminate some of the LLC misses that

RAR speculates upon, thereby possibly reducing the opportu-

nity for RAR to improve reliability and performance. Figure 11

reports MTTF, ABC and IPC for the OoO baseline, PRE and

RAR with hardware prefetching at the LLC level (i.e., ‘+L3’)

and at all cache levels (i.e., ‘+ALL’), relative to our baseline.

The overall conclusion is that RAR leads to a significant

improvement in soft-error reliability and performance even for

architectures that feature aggressive hardware prefetching.

781

0.0

1.0

2.0

3.0

4.0

5.0

MTTF

OoO PRE
RAR OoO+L3
PRE+L3 RAR+L3
OoO+ALL PRE+ALL
RAR+ALL

0.0

0.2

0.4

0.6

0.8

1.0

ABC

OoO PRE
RAR OoO+L3
PRE+L3 RAR+L3
OoO+ALL PRE+ALL
RAR+ALL

0.0

0.5

1.0

1.5

2.0

2.5

IPC

OoO PRE
RAR OoO+L3
PRE+L3 RAR+L3
OoO+ALL PRE+ALL
RAR+ALL

Fig. 11: Evaluating RAR under hardware prefetching. RAR im-
proves reliability and performance for a baseline architecture
with hardware prefetching.

VI. RELATED WORK

A large body of work over more than two decades has

targeted soft error reliability, focusing on soft error estima-

tion [34, 41, 44], modeling [9, 45, 52, 61, 69, 75, 78, 79, 81]

and optimization [11, 46, 50, 68, 74, 80]. We now discuss the

most closely related work in more detail.

A. Error Detection and Correction

Error detection and correction techniques, e.g., ECC and

parity, are widely employed in address-based memory struc-

tures. L2/LLC and main memory are commonly protected with

ECC, while L1 caches, TLBs and BTBs are protected with

EDC (e.g., parity) or ECC [6, 38, 67]. For example, the L1-D,

L1-I and TLBs of the Intel Xeon Phi chip are protected with

parity; the L2 is protected with ECC [28].

Core structures are not as easily protected against soft

errors. In particular, coding techniques such as ECC cannot

be applied to latency-sensitive pipeline structures such as

the ROB, IQ, etc., as they add additional latency to each

cycle [10, 14, 72, 78]. Parity can bring significant reliability

improvements, however, the area, power and energy overheads

amount to 14% for an OoO core, and are even higher for an

in-order core [14].

B. Redundant Execution

Redundant execution techniques exploit multiple hardware

contexts supported by a simultaneous multithreading (SMT)

processor for improving reliability by generating identical

program threads and comparing their outputs. Such techniques

either use full redundancy [40, 53, 57, 77] or partial redun-

dancy [19, 54, 56, 73]. Slipstream processors [73] feature a

speculative scouting A-thread to run ahead of a redundant R-

thread on separate cores in a multi-core processor to improve

both performance and reliability. Earlier techniques also used

radiation-hardened circuits to recover from soft errors [11].

DIVA [7] checks the correctness of a superscalar OoO core

using a more reliable superscalar in-order core. However,

all these techniques incur significant performance, area and

power overheads [40, 68, 72], in contrast to RAR. More

specifically, redundant multithreading can cause up to 32%

performance degradation, in addition to consuming one hard-

ware context [40]. Qureshi et al. [55] detect soft errors by

performing redundant execution upon a long-latency cache

miss; however, their approach leads to a 7.1% IPC degradation

for memory-intensive applications. Fu et al. [16] propose

ORBIT, a mechanism that exploits operand readiness-based

instruction dispatch to mitigate high vulnerability of the issue

queue in SMT processors. However, their approach focuses

only on issue queue vulnerability with a 3% reduction in per-

formance. SafetyNet [66] reduces the overhead for restoring

the correct state when an error is detected. However, it does

not fundamentally reduce the likelihood for a soft error to

occur, in contrast to RAR which substantially decreases the

amount of exposed vulnerable state.

C. Dispatch Throttling

Soundararajan et al. [68] propose dispatch throttling and

selective redundancy for vulnerability control by trading off

performance and reliability at runtime. Throttling decreases

the rate of instruction dispatch when AVF of the ROB exceeds

a preset bound. Their results report substantial performance

degradation of 9% on average, even for high-AVF bounds. For

low-AVF bounds, throttling performs even worse with average

performance degradation up to 80%. Selective redundancy

builds upon simultaneous redundant threading [57] to maintain

hard vulnerability bounds at all times; unfortunately, it still

suffers a performance degradation of 7% on average. In

contrast to dispatch throttling and selective redundancy, RAR

improves performance (while also improving reliability).

D. Latency-Tolerant Execution

Proposals aimed at improving performance or energy-

efficiency also indirectly improve reliability. Runahead tech-

niques other than PRE and TR, such as runahead buffer [25],

continuous runahead [26], and vector runahead [49], also im-

prove reliability by pre-executing the future instruction stream

to target distant MLP. Waiting Instruction Buffer (WIB) [32]

and continual flow pipelines [71] release microarchitectural

resources occupied by miss-dependent instructions to execute

more future instructions. Long-term parking [60] allocates

back-end pipeline resources as late as possible for saving

power, but still allocates ROB entries for all instructions past

a long-latency load miss. Fetch halting [36] improves power

by reducing occupancy in the issue queue and reorder buffer,

while degrading performance by 6.5%. Overall, these prior

proposals (still) expose a major portion of the pipeline to soft

errors under an LLC miss. RAR, on the other hand, turns the

pipeline into a fully speculative engine upon an LLC miss and

significantly improves both reliability and performance.

E. Heterogeneous Systems

Recent work explores how to improve reliability in hetero-

geneous systems. Naithani et al. [46, 47] improve system reli-

ability in a heterogeneous multicore. Ainsworth et al. [1, 2, 3]

propose hardware-only techniques that use parallel heteroge-

neous cores to detect and correct errors. Gupta et al. [22]

propose reliability-aware data placement to improve reliability

in heterogeneous memory architectures. Liu et al. [35] propose

reliability-aware garbage collection in hybrid memory systems.

782

Leng et al. [33] introduce ‘asymmetric resilience’ for effi-

ciently handling transient errors in accelerator-based systems.

RAR is orthogonal to these mechanisms, i.e., deploying RAR

in the OoO cores will further enhance soft-error reliability of

the overall (heterogeneous) system.

VII. CONCLUSION

Transient faults lead to a major reliability challenge in

modern-day computer systems because of technology scaling,

reduced operating voltages and increased core microarchi-

tecture structure sizes. This is particularly problematic for

memory-intensive workloads as a large amount of vulnerable

state is exposed in the processor’s back-end while waiting for

a long-latency memory access to return. This paper makes

the observation that runahead execution, as an unintented side

effect, improves soft-error reliability while improving perfor-

mance. This paper advances the state-of-the-art by proposing

Reliability-Aware Runahead which renders the microarchi-

tecture state non-vulnerable during runahead execution and

which initiates runahead execution early. Across our set of

compute- and memory-intensive benchmarks, we find that

RAR improves MTTF by on average 2.5× (and up to 35.8×)

compared to an out-of-order baseline while at the same time

improving performance by on average 11.2% and up to 2.6×.

ACKNOWLEDGEMENTS

We thank the anonymous reviewers for their insightful

feedback. This work is supported by the European Research

Council (ERC) under Grant 741097, and the Research Foun-

dation Flanders (FWO) under Grant G.0144.17N.

REFERENCES

[1] S. Ainsworth and T. M. Jones. Parallel error detection

using heterogeneous cores. In DSN, 2018.

[2] S. Ainsworth and T. M. Jones. Paramedic: Heterogeneous

parallel error correction. In DSN, 2019.

[3] S. Ainsworth, L. Zoubritzky, A. Mycroft, and T. M. Jones.

Paradox: Eliminating voltage margins via heterogeneous

fault tolerance. In HPCA, 2021.

[4] AnandTech. Examining intels ice lake processors: Taking

a bite of the sunny cove microarchitecture, 2019. URL

https://www.anandtech.com/show/14514/examining-

intels-ice-lake-microarchitecture-and-sunny-cove/3.

[5] AnandTech. Apple announces the apple silicon

M1: ditching x86 – what to expect? based on Al4,

2020. URL https://www.anandtech.com/show/16226/

apple-silicon-m1-a14-deep-dive/2.

[6] H. Ando, Y. Yoshida, A. Inoue, I. Sugiyama, T. Asakawa,

K. Morita, T. Muta, T. Motokurumada, S. Okada, H. Ya-

mashita, Y. Satsukawa, A. Konmoto, R. Yamashita, and

H. Sugiyama. A 1.3 GHz fifth generation SPARC64

microprocessor. ISSCC, 2003.

[7] T. Austin. Diva: a reliable substrate for deep submicron

microarchitecture design. In MICRO, 1999.

[8] R. Baumann. Soft errors in commercial semiconductor

technology: Overview and scaling trends. IEEE Relia-
bility Physics Tutorial Notes, Reliability Fundamentals,

2002.

[9] A. Biswas, P. Racunas, R. Cheveresan, J. Emer, S. S.

Mukherjee, and R. Rangan. Computing architectural

vulnerability factors for address-based structures. In

ISCA, 2005.

[10] S. Borkar, N. P. Jouppi, and P. Stenstrom. Microproces-

sors in the era of terascale integration. In DATE, 2007.

[11] T. Calin, M. Nicolaidis, and R. Velazco. Upset hardened

memory design for submicron CMOS technology. IEEE
TNS, 1996.

[12] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and

M. Snir. Toward exascale resilience. IJHPCA, 2009.

[13] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and

L. Eeckhout. An evaluation of high-level mechanistic

core models. ACM TACO, 2014.

[14] E. Cheng, S. Mirkhani, L. G. Szafaryn, C. Y. Cher,

H. Cho, K. Skadron, M. R. Stan, K. Lilja, J. A. Abra-

ham, P. Bose, and S. Mitra. Tolerating soft errors in

processor cores using CLEAR (Cross-Layer Exploration

for Architecting Resilience). IEEE TCAD, 2017.

[15] J. Dundas and T. Mudge. Improving data cache perfor-

mance by pre-executing instructions under a cache miss.

In ICS, 1997.

[16] X. Fu, T. Li, and J. Fortes. ORBIT: Effective issue queue

soft-error vulnerability mitigation on simultaneous mul-

tithreaded architectures using operand readiness-based

instruction dispatch. In SBAC-PAD, 2008.

[17] R. Gabor, Y. Sazeides, A. Bramnik, A. Andreou,

C. Nicopoulos, K. Patsidis, D. Konstantinou, and G. Dim-

itrakopoulos. Error-shielded register renaming sub-

system for a dynamically scheduled out-of-order core. In

DATE, 2019.

[18] M. Gomaa, C. Scarbrough, T. N. Vijaykumar, and

I. Pomeranz. Transient-fault recovery for chip multipro-

cessors. In ISCA, 2003.

[19] M. A. Gomaa and T. N. Vijaykumar. Opportunistic

transient-fault detection. In ISCA, 2005.

[20] S. Govindavajhala and A. W. Appel. Using memory

errors to attack a virtual machine. In S & P, 2003.

[21] M. Gupta, D. Lowell, J. Kalamatianos, S. Raasch, V. Srid-

haran, D. Tullsen, and R. Gupta. Compiler techniques to

reduce the synchronization overhead of GPU redundant

multithreading. In DAC, 2017.

[22] M. Gupta, V. Sridharan, D. Roberts, A. Prodromou,

A. Venkat, D. Tullsen, and R. Gupta. Reliability-aware

data placement for heterogeneous memory architecture.

In HPCA, 2018.

[23] S. Gupta, N. Soundararajan, R. Natarajan, and S. Subra-

money. Opportunistic early pipeline re-steering for data-

dependent branches. In PACT, 2020.

[24] I. S. Haque and V. S. Pande. Hard data on soft errors: A

large-scale assessment of real-world error rates in gpgpu.

In CCGRID, 2010.

[25] M. Hashemi and Y. N. Patt. Filtered runahead execution

with a runahead buffer. In MICRO, 2015.

783

[26] M. Hashemi, O. Mutlu, and Y. N. Patt. Continuous

runahead: Transparent hardware acceleration for memory

intensive workloads. In MICRO, 2016.

[27] J. Henkel, L. Bauer, N. Dutt, P. Gupta, S. Nassif,

M. Shafique, M. Tahoori, and N. Wehn. Reliable on-

chip systems in the nano-era: Lessons learnt and future

trends. In DAC, 2013.

[28] Intel. Intel R© Xeon PhiTM coprocessor system software

developers guide, 2014. URL https://software.intel.com/

sites/default/files/managed/09/07/xeon-phi-coprocessor-

system-software-developers-guide.pdf.

[29] Intel 64 and IA-32 Architectures Optimization Reference
Manual. Intel, 2016.

[30] L. K. John. Aggregating performance metrics over

a benchmark suite. In Performance Evaluation and
Benchmarking. 2006.

[31] Y. Kim, R. Daly, J. Kim, C. Fallin, J. H. Lee, D. Lee,

C. Wilkerson, K. Lai, and O. Mutlu. Flipping bits in

memory without accessing them: An experimental study

of DRAM disturbance errors. In ISCA, 2014.

[32] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and

E. Rotenberg. A large, fast instruction window for

tolerating cache misses. In ISCA, 2002.

[33] J. Leng, A. Buyuktosunoglu, R. Bertran, P. Bose,

Q. Chen, M. Guo, and V. Janapa Reddi. Asymmetric re-

silience: Exploiting task-level idempotency for transient

error recovery in accelerator-based systems. In HPCA,

2020.

[34] X. Li, S. V. Adve, P. Bose, and J. A. Rivers. Online

estimation of architectural vulnerability factor for soft

errors. In ISCA, 2008.

[35] W. Liu, S. Akram, J. B. Sartor, and L. Eeckhout.

Reliability-aware garbage collection for hybrid HBM-

DRAM memories. ACM TACO, 2021.

[36] N. Mehta, B. Singer, R. I. Bahar, M. Leuchtenburg, and

R. Weiss. Fetch halting on critical load misses. In ICCD,

2004.

[37] S. E. Michalak, K. W. Harris, N. W. Hengartner, B. E.

Takala, and S. A. Wender. Predicting the number of fatal

soft errors in Los Alamos National Laboratory’s ASC Q

supercomputer. IEEE TDMR, 2005.

[38] S. E. Michalak, A. J. DuBois, C. B. Storlie, H. M. Quinn,

W. N. Rust, D. H. DuBois, D. G. Modl, A. Manuzzato,

and S. P. Blanchard. Assessment of the impact of cosmic-

ray-induced neutrons on hardware in the Roadrunner

supercomputer. IEEE TDMR, 2012.

[39] S. Mukherjee. Architecture Design for Soft Errors.

Morgan Kaufmann Publishers, 2008.

[40] S. S. Mukherjee, M. Kontz, and S. K. Reinhardt. De-

tailed design and evaluation of redundant multithreading

alternatives. In ISCA, 2002.

[41] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt,

and T. Austin. A systematic methodology to compute the

architectural vulnerability factors for a high-performance

microprocessor. In MICRO, 2003.

[42] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt. Runa-
head execution: An alternative to very large instruction

windows for out-of-order processors. In HPCA, 2003.

[43] O. Mutlu, H. Kim, and Y. N. Patt. Techniques for efficient

processing in runahead execution engines. In ISCA, 2005.

[44] A. A. Nair, L. K. John, and L. Eeckhout. AVF stressmark:

Towards an automated methodology for bounding the

worst-case vulnerability to soft errors. In MICRO, 2010.

[45] A. A. Nair, S. Eyerman, L. Eeckhout, and L. K. John.

A first-order mechanistic model for architectural vulner-

ability factor. In ISCA, 2012.

[46] A. Naithani, S. Eyerman, and L. Eeckhout. Reliability-

aware scheduling on heterogeneous multicore processors.

In HPCA, 2017.

[47] A. Naithani, S. Eyerman, and L. Eeckhout. Optimizing

soft error reliability through scheduling on heterogeneous

multicore processors. IEEE TC, 2018.

[48] A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout. Precise

runahead execution. In HPCA, 2020.

[49] A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout.

Vector runahead. In ISCA, 2021.

[50] M. Nicolaidis. Design for soft error mitigation. IEEE
TDMR, 2005.

[51] E. Normand. Single event upset at ground level. IEEE
TNS, 1996.

[52] G. Papadimitriou and D. Gizopoulos. Demystifying the

system vulnerability stack: Transient fault effects across

the layers. In ISCA, 2021.

[53] A. Parashar, S. Gurumurthi, and A. Sivasubramaniam. A

complexity-effective approach to alu bandwidth enhance-

ment for instruction-level temporal redundancy. In ISCA,

2004.

[54] A. Parashar, A. Sivasubramaniam, and S. Gurumurthi.

Slick: Slice-based locality exploitation for efficient re-

dundant multithreading. In ASPLOS, 2006.

[55] M. K. Qureshi, O. Mutlu, and Y. N. Patt.

Microarchitecture-based introspection: a technique

for transient-fault tolerance in microprocessors. In DSN,

2005.

[56] V. K. Reddy, E. Rotenberg, and S. Parthasarathy. Under-

standing prediction-based partial redundant threading for

low-overhead, high- coverage fault tolerance. In ASPLOS,

2006.

[57] S. K. Reinhardt and S. S. Mukherjee. Transient fault

detection via simultaneous multithreading. In ISCA,

2000.

[58] E. Rotenberg. AR-SMT: A microarchitectural approach

to fault tolerance in microprocessors. In FTCS, 1999.

[59] S. Sadasivam, B. W. Thompto, R. Kalla, and W. J. Starke.

IBM Power9 processor architecture. IEEE Micro, 2017.

[60] A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer,

A. Perais, A. Seznec, and P. Michaud. Long term

parking (LTP): Criticality-aware resource allocation in

ooo processors. In MICRO, 2015.

[61] Seongwoo Kim and A. K. Somani. Soft error sensi-

tivity characterization for microprocessor dependability

enhancement strategy. In DSN, 2002.

[62] A. Seznec. TAGE-SC-L branch predictors again. In CBP,

784

2016.

[63] S. Z. Shazli, M. Abdul-Aziz, M. B. Tahoori, and D. R.

Kaeli. A field analysis of system-level effects of soft

errors occurring in microprocessors used in information

systems. In ITC, 2008.

[64] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder.

Automatically characterizing large scale program behav-

ior. In ASPLOS, 2002.

[65] J. C. Smolens, B. T. Gold, J. Kim, B. Falsafi, J. C. Hoe,

and A. G. Nowatzyk. Fingerprinting: Bounding soft-error

detection latency and bandwidth. In ASPLOS, 2004.

[66] D. Sorin, M. Martin, M. Hill, and D. Wood. SafetyNet:

improving the availability of shared memory multiproces-

sors with global checkpoint/recovery. In ISCA, 2002.

[67] D. J. Sorin. Fault Tolerant Computer Architecture.

Morgan and Claypool Publishers, 2009.

[68] N. K. Soundararajan, A. Parashar, and A. Sivasubra-

maniam. Mechanisms for bounding vulnerabilities of

processor structures. In ISCA, 2007.

[69] V. Sridharan and D. R. Kaeli. Using hardware vulnera-

bility factors to enhance AVF analysis. In ISCA, 2010.

[70] V. Sridharan, J. Stearley, N. DeBardeleben, S. Blanchard,

and S. Gurumurthi. Feng shui of supercomputer memory

positional effects in dram and sram faults. In SC, 2013.

[71] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and

M. Upton. Continual flow pipelines. In ASPLOS, 2004.

[72] V. Stojanovic, R. I. Bahar, J. Dworak, and R. Weiss. A

cost-effective implementation of an ecc-protected instruc-

tion queue for out-of-order microprocessors. In DAC,

2006.

[73] K. Sundaramoorthy, Z. Purser, and E. Rotenburg. Slip-

stream processors: Improving both performance and fault

tolerance. In ASPLOS, 2000.

[74] K. Swaminathan, N. Chandramoorthy, C. Cher,

R. Bertran, A. Buyuktosunoglu, and P. Bose. BRAVO:

Balanced reliability-aware voltage optimization. In

HPCA, 2017.

[75] K. Swaminathan, R. Bertran, H. Jacobson, P. Kudva, and

P. Bose. Generation of stressmarks for early stage soft-

error modeling. In DSN, 2019.

[76] D. M. Tullsen and J. A. Brown. Handling long-latency

loads in a simultaneous multithreading processor. In

MICRO, 2001.

[77] T. N. Vijaykumar, I. Pomeranz, and K. Cheng. Transient-

fault recovery using simultaneous multithreading. In

ISCA, 2002.

[78] K. R. Walcott, G. Humphreys, and S. Gurumurthi. Dy-

namic prediction of architectural vulnerability from mi-

croarchitectural state. In ISCA, 2007.

[79] N. J. Wang, J. Quek, T. M. Rafacz, and S. J. Patel.

Characterizing the effects of transient faults on a high-

performance processor pipeline. In DSN, 2004.

[80] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt.

Techniques to reduce the soft error rate of a high-

performance microprocessor. In ISCA, 2004.

[81] Xin Fu, J. Poe, Tao Li, and J. A. B. Fortes. Characterizing
microarchitecture soft error vulnerability phase behavior.

In MASCOTS, 2006.

[82] J. Xu, S. Chen, Z. Kalbarczyk, and R. K. Iyer. An

experimental study of security vulnerabilities caused by

errors. In DSN, 2001.

[83] J. Ziegler, H. Curtis, H. Muhlfeld, C. Montrose, B. Chin,

M. Nicewicz, C. Russell, W. Wang, L. Freeman,

P. Hosier, L. LaFave, J. Walsh, J. Orro, G. Unger,

J. Ross, T. O’Gorman, B. Messina, T. Sullivan, A. Sykes,

H. Yourke, T. Enger, V. Tolat, T. Scott, A. Taber, R. Suss-

man, W. Klein, and C. Wahaus. IBM experiments in soft

fails in computer electronics. IBM Journal of Research
and Development, 1996.

785

