
THEME ARTICLE: TOP PICKS FROM THE 2021 COMPUTER
ARCHITECTURE CONFERENCES

Vector Runahead for Indirect
Memory Accesses
Ajeya Naithani , Ghent University, B-9000, Ghent, Belgium

Sam Ainsworth , University of Edinburgh, EH8 9AB, Edinburgh, U.K.

Timothy M. Jones , University of Cambridge, CB3 0FD, Cambridge, U.K.

Lieven Eeckhout , Ghent University, B-9000, Ghent, Belgium

Vector runahead delivers extremely highmemory-level parallelism even for the chains
of dependentmemory accesseswith complex intermediate address computation,
which conventional runahead techniques fundamentally cannot handle and,
therefore, have ignored. It does this by rearchitecting runahead to use speculative
data-level parallelism, rather thanwork skipping, as its primary formof extracting
morememory-level parallelism in runaheadmode than a true execution can, which we
hopewill bring about an entirely new dimension for high-performance processors.

Many modern-day workloads are poorly served
by current Out-of-Order (OoO) superscalar
cores, since they feature sparse, indirect

memory accesses3 characterized by high-latency cache
misses that are unpredictable by today’s stride prefetch-
ers.6 Despite large reorder-buffer (ROB) and issue-queue
resources, superscalar cores running these applications
have run out of steam, spending themajority of their time
stalled since they cannot capture thememory-level paral-
lelism (MLP) necessary to hide today’s memory access
latencies.

Vector runahead (VR) rearchitects runahead execu-
tion to use a newmethod of generatingMLP. Rather than
work skipping,8 VR extractsMLP as a speculative form of
data-level parallelism: it groups together independent
loads from many different iterations of the same code,
allowing them to all follow different sequences of depen-
dent loads independently. It further improves throughput
by running these newly grouped sequences as vector
operations: even when the workload itself is not vectoriz-
able, the prefetching effect from the runahead, which
need not be perfectly accurate, is likely to still exhibit
data-level parallelism.

On a variety of graph, database, and high-perfor-
mance computing workloads, VR improves performance
by 1.79� compared to a baseline OoO processor with a
stride prefetcher. Relative to the state-of-the-art indirect
memory prefetcher (IMP)12 and precise runahead execu-
tion (PRE)9 VR improves performance by 1.49� on an
average. The fundamental reason for this significant per-
formance improvement is illustrated in Figure 1: PRE is
unable to accurately prefetch the majority of indirect
memory accesses, unlike VR.

EXISTINGRUNAHEADTECHNIQUES
While specialized accelerators are one solution, and
programmable forms of prefetching another,1 the ideal
solution would be a pure-microarchitectural technique
that could achieve the same benefits without the
need for recompilation. Hardware prefetchers can
pick up a variety of memory-access patterns, but to
achieve the instruction-level visibility necessary to cal-
culate the addresses of complex access patterns in
today’s workloads,1 one must operate within the core,
instead of within the cache. Runahead execution8,9 is
the most promising technique to achieve this.

The promise of runahead execution is that the core
can continue to performuseful work evenwhile stalled on
a long-latency cache miss, by calculating addresses and
prefetching data for futurememory accesses. By specula-
tively issuing multiple independent memory accesses,
runahead execution significantly increases MLP, ulti-
mately improving overall application performance.

0272-1732 � 2022 IEEE
Digital Object Identifier 10.1109/MM.2022.3163132
Date of publication 29 March 2022; date of current version 30
June 2022.

IEEE Micro Published by the IEEE Computer Society July/August 2022116
Authorized licensed use limited to: University of Gent. Downloaded on June 30,2022 at 06:54:35 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0002-3726-0055
https://orcid.org/0000-0002-3726-0055
https://orcid.org/0000-0002-3726-0055
https://orcid.org/0000-0002-3726-0055
https://orcid.org/0000-0002-3726-0055
https://orcid.org/0000-0002-4114-7661
https://orcid.org/0000-0002-4114-7661
https://orcid.org/0000-0002-4114-7661
https://orcid.org/0000-0002-4114-7661
https://orcid.org/0000-0002-4114-7661
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473
https://orcid.org/0000-0001-8792-4473

However, conventional runahead comes unstuck
by the very mechanism it uses to generate MLP. First,
by skipping over loads for which the data source is not
yet ready, it is unsuitable for today’s complex indirec-
tion patterns that consist of chains of dependent load
misses. Second, conventional runahead is limited by
both the processor’s front-end (fetch/decode/rename)
width and available back-end resources (issue queue
slots and physical registers).9 What is needed is a
technique that can overcome the limitations of a pro-
cessor’s resources to generate massive amounts of
MLP and follow chains of dependent loads to comple-
tion, prefetching all data required for many memory
accesses in the future. VR is that technique.

VECTOR RUNAHEAD
The key insight behind VR is that many indirect memory
accesses occur within loops where each iteration follows
approximately the same control-flow path, and that this
regularity can be exploited through the parallel execution
of multiple iterations simultaneously. The speculative
vector execution of multiple future loop iterations is pos-
sible and safe, evenwhen the original workload is not vec-
torizable, since the results will be discarded once VR is
terminated and normal execution resumes.

VR addresses the limitations described previously
in three ways, as illustrated in Figure 2. First, it deliber-
ately waits for the results of currently unavailable
loads, rather than invalidating and skipping them,
which enables VR to prefetch entire load chains but
causes the technique to quickly exhaust its back-end
OoO resources and, thus, stall on waiting for these
intermediate results. Second, to fix this, VR vectorizes
the runahead instruction stream by reinterpreting sca-
lar instructions as vector operations to generate many

different cache misses at different offsets. This means
that despite executing many future iterations of a
loop at once, VR only requires the processor resources
(both front-end and back-end instruction slots) of a
single iteration. In effect, this virtually increases the
effective fetch/decode bandwidth during runahead
mode by issuing independent operations both in
quick succession and merged together into single
instructions. Third, it issues multiple rounds of
these vectorized instructions through our schemes
of vector unrolling and pipelining to speculate even
deeper and increase the effective runahead mem-
ory bandwidth even further. This has the effect of
installing huge numbers of independent loads next
to each other in the issue queue and ROB, avoiding
the need for OoO structures of unbounded size.
Altogether, this means that, while VR must wait for
the dependent loads rather than skipping them, it
waits on a huge number of them at once, finally
allowing the achievement of extreme MLP even on
complex workloads.

MICROARCHITECTURE DETAILS
We now describe VR’s required changes to the proces-
sor pipeline, as illustrated in Figure 3.

Initiating VR
The core enters runahead mode when either of the fol-
lowing two conditions is satisfied after a load instruction
blocks the head of the ROB: 1) the ROB is filled with
instructions or 2) the issue queue is filled to 80% of its full
capacity. VR checkpoints the PC and the front-end regis-
ter allocation table (RAT). This marks the entry to runa-
headmode. After entering runaheadmode, the processor
continues to fetch, decode, and execute future

FIGURE 1. CPI stacks for the baseline OoO core, PRE, and VR. The memory component is broken down and attributed to striding

loads and indirect dependent-chain loads. The previous state-of-the-art runahead cannot prefetch the majority of indirect mem-

ory accesses, unlike VR.

July/August 2022 IEEE Micro 117

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

Authorized licensed use limited to: University of Gent. Downloaded on June 30,2022 at 06:54:35 UTC from IEEE Xplore. Restrictions apply.

instructions. We use a stride detector6 to find regular
access patterns in the code that can be used as “induc-
tion variables” to produce speculative vectorized copies

of code. The detector also keeps track of the last depen-
dent load (known as the “terminator”) on the striding
load. Entry to VRmode begins when we decode a striding
load. We vectorize the striding load, followed by the
sequence of instructions depending on it. We call the
dependent instructions between two dynamic instances
of a striding load an indirect chain.

Detecting Indirect Chains
We use a taint vector (TV) to detect the indirect chains
depending on a striding load. The TV features an entry
for each architectural integer register, and stores two
flags: 1) if the previous instruction to write to this reg-
ister was a vectorized operation (vectorize bit), and
2) if the previous instruction to write to this register
was invalid (invalid bit). The TV is empty at the start of
runahead, as it is cleared whenever runahead termi-
nates. Vectorize bits are initially set for the destination
architectural register of a discovered striding load.
Invalid bits are initially set based on the destinations
of unsupported operations, e.g., those that take float-
ing-point operations as input (which are always invalid
and so need no TV entry). Both bits are propagated
using vector taint tracking, a mechanism to propagate
vectorization where needed. Instructions with no bits
set are issued as conventional scalar runahead opera-
tions, and treated as loop invariant with respect to
vectorized copies of the instruction sequence in the
current VR mode iteration. Instructions with the
invalid bit set are discarded, and instructions with only
the vectorize bit set are vectorized.

Vectorizing Instructions
A microprogrammed routine vectorizes the indirect
chain. For striding loads, the vectorizer generates their
vectorized versions by taking the current memory
address accessed by the striding load and its stride as
inputs. The vectorizer generates one 512-bit vector load
instruction and injects the vector instruction into the
pipeline. Regardless of input bit width, eight scalar oper-
ands are fit in this 512-bit vector, such that we can oper-
ate on any data size up to 64 bits. We assume that each
vector instruction uses 512-bit vector registers (similar
to Intel’s AVX-512) for its source and destination, and we
reuse the microarchitecture’s physical vector registers,
and the micro-ops implemented by the microarchitec-
ture’s vector units. Similarly, we vectorize all arithmetic
and load instructions (directly or indirectly) depending
on a striding load, and generate their corresponding 512-
bit vector versions.

The renamed instructions are dispatched to the
processor back-end where they are executed

FIGURE 2. VR versus PRE9 on an illustrative code example. The

loads highlighted in green can only be triggered by stalling on

loads highlighted in gray, and those in blue by stalling on gray

and green. VR prefetches multiple memory accesses in parallel

along thememory dependence chain during runaheadmode. (a)

Example code, with memory access by array indirection, with

intermediate address computation and pointer access. (b) Pre-

cise runahead execution (PRE)9 is able to prefetch array ele-

ments from A. In contrast, the array elements to B cannot be

prefetched during runahead mode as they depend on A. Like-

wise, the data values cannot be prefetched either because they

depend on B. Note that the elements in A are accessed serially

as indicated. PRE runahead mode is terminated before it can

prefetch array elements of B; furthermore, the number of back-

end resources neededduring runaheadmode limits the specula-

tion depth. (c) Vector runahead vectorizes memory accesses

along the memory dependence chain whilst in runahead mode.

Multiple accesses to A happen in parallel, followed by parallel

accesses to B, followed by parallel data-value reads. Vector

runahead changes runahead mode’s termination condition, i.e.,

instead of returning to normal mode once the blocking load

miss returns from main memory, vector runahead continues

runahead mode until all loads along the dependent load chain

have been issued. This delayed termination condition delivers

higher performance by extracting moreMLP than an immediate

return to normalmode.

118 IEEE Micro July/August 2022

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

Authorized licensed use limited to: University of Gent. Downloaded on June 30,2022 at 06:54:35 UTC from IEEE Xplore. Restrictions apply.

speculatively. The instructions executed in runahead
mode are useful only in generating memory accesses
and their state is not maintained in the ROB. There-
fore, no ROB entries are allocated in runahead mode.
Instead, we use a simpler register deallocation queue
(RDQ)9 to handle register availability.

Vector Unrolling and Pipelining
To cover more iterations of the indirect chain, we can
alternatively generate more than one vector instruction
for each scalar instruction in the chain. Depending on
the amount of back-end resources available, the gener-
ated vector instructions can be dispatched to the pro-
cessor back-end in two ways. First, through vector
unrolling [see Figure 4(b)], we can dispatch vector
instructions in multiple rounds. For example, we could
dispatchU�8 copies of a loop by issuing the first eight in
a single vectorized copy of the instruction stream in
round 1, then repeating the processU�1 times, where U

is the unroll depth. Second, through vector pipelining
[see Figure 4(c)], we can dispatch all vector instruc-
tions for each scalar instruction before dispatching
P , the pipeline width, vector instructions for the next
instruction in the indirect chain. When the amount of
back-end resources is limited, vector unrolling is the
preferred technique as the processor back-end does
not stall due to the lack of available resources to pro-
cess vector instructions. Vector pipelining, on the
other hand, delivers better performance when the
back-end has sufficient resources to simultaneously
process a large number of vector instructions. A pro-
cessor microarchitecture can be tuned to dynami-
cally select one of the two techniques for higher
performance depending on the availability of back-
end resources.

Since we can generate multiple vector instruc-
tions for each scalar instruction of the indirect chain,
each scalar architectural register first needs to be
mapped to multiple vector architectural registers, fol-
lowed by mapping each vector architectural register
to a vector physical register. The complete process of
renaming from a scalar architectural register to a vec-
tor physical register is accomplished with the help of

the vector register allocation table (VRAT), which main-
tains P , the vector pipelining width, entries per architec-
tural integer register, recording the P destination
physical vector registers assigned to the P pipelined
copies of the instruction.Whenwe look up theseP regis-
ters in the VRAT, each of the P copies of the new vector-
ized instruction uses one of the P entries as its own
input. This enables us to distinguish the inputs and out-
puts of separate pipelined iterations within the vector
pipelining arrangement, which, from an instruction fetch
point of view, all alias to the same instruction.

THE KEY INSIGHT BEHIND VECTOR
RUNAHEAD IS THAT MANY INDIRECT
MEMORY ACCESSES OCCURWITHIN
LOOPSWHERE EACH ITERATION
FOLLOWS APPROXIMATELY THE
SAME CONTROL-FLOWPATH, AND
THAT THIS REGULARITY CAN BE
EXPLOITED THROUGH PARALLEL
EXECUTION OFMULTIPLE ITERATIONS
SIMULTANEOUSLY.

Control Flow
All vector lanes follow the same pattern of control flow,
apart fromwhen there is a divergence between the lanes
in VR mode when they meet a branch instruction. A
micro-op converts scalar branches into a predicate
mask for the eight vector lanes. Since VR need not cover
all code, we use only the results of the first lane to deter-
mine the direction of the branch, and mask off any lanes
that would have taken a different control-flowpath.

Terminating Runahead
VRmode terminateswhen any of the following four condi-
tions is satisfied: 1) we encounter a dynamic instance of
the initial striding load again; 2) we encounter, and issue,
the terminator: the PC identified by the stride detector as

FIGURE 3. Processor pipeline for VR execution.

July/August 2022 IEEE Micro 119

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

Authorized licensed use limited to: University of Gent. Downloaded on June 30,2022 at 06:54:35 UTC from IEEE Xplore. Restrictions apply.

the last dependent load in the sequence; 3) all vector
lanes have beenmarked as invalid; or 4) we time out (after
200 scalar-equivalent instructions have been executed in
VR mode), in the case of traveling down an unexpected
code path. When we dispatch multiple rounds of vector-
ized instructions in vector unrolling, we re-enter VR mode
immediately, with the next striding load issuing vector

gathers again. This is repeated until we have issued all the
rounds and only then is normal execution resumed. The
benefit of vectorizing the entire indirect chain far exceeds
the additional duration the core is in runahead mode, as
VR yields higherMLP than typical OoOexecution.

Upon termination, we restore the front-end RAT to
the point of entry into runahead mode, and the TV,
VRAT, and RDQ are cleared. The front-end is redir-
ected to fetch from the next instruction after the last
dispatched instruction in the ROB.

Hardware Overhead
VR requires only modest changes to the processor pipe-
line, including the stride detector, TV, and VRAT. The RDQ
is already used by PRE.9 When put together, the total
hardware overhead of VR relative to a baseline OoO core
is limited to 1.3 KB, versus 1.24 KB for PRE.

EVALUATION
We compare the following microarchitectural mecha-
nisms, all implemented in Sniper.5

› Out-of-order: Baseline OoO core based on Intel’s
Skylake, with hardware stride prefetcher.

› Precise runahead execution: The state-of-the-art
runahead execution technique, as proposed by
Naithani et al.9 We assume an ideal stalling-slice
table; therefore, there are no misses in the table.

› Indirect memory prefetcher: The IMP, as pro-
posed by Yu et al.12 IMP is attached to the L1
D-cache, and detects indirect access patterns
starting from striding memory accesses.

› Vector runahead: The VR mechanism proposed
in this article, assuming an unroll length U of 8
and pipeline depth P of 8.

We consider a variety of benchmarks featuring com-
plexmemory and compute dependencies in their execu-
tion stream. These benchmarks are memory-latency
boundon today’s systems, and are based onhigh-perfor-
mance computing (HPC), graph and database work-
loads evaluated in previous work on programmer- and
compiler-managed prefetchingmechanisms.1,2

The benchmarks represent a variety of different com-
plex memory-access patterns, with differing indirect
chains and compute requirements. We use compiler flag
-ftree-vectorize (via -O3) in all comparisons, but we find
that autovectorization does not alter performance
because the code is not vectorizable (despite being ame-
nable to VR). We refer to the ISCA 2021 conference paper
for details regarding the experimental setup and various
sensitivity analyses.

FIGURE 4. VR uses two techniques, vector unrolling, and vector

pipelining, to improve the performance by increasing the degree

of runahead to allow wider vectors than supported natively by

the instruction-set architecture. (a) Basic vector runahead. In

this example, MLP is limited to a single vector instruction, so

only four outstanding memory accesses can be prefetched at

once, and few future memory accesses are covered by the

memory-parallel vector runahead, limiting performance gains for

future normal execution. (b) Vector unrolling. While the vector

runahead operations are still run in sequence, with a maximum

MLP of 4, we cover significantly more of the future memory

accesses before returning to normal execution, improving the

latter’s observed performance gain. (c) Vector pipelining. We

overlap the independent operations from multiple unrolled itera-

tions. This allows many misses to be handled simultaneously: in

this example, 1 and 2 can be executed in parallel, doubling MLP

to 8, as can 3 and 4, and 5 and 6.

120 IEEE Micro July/August 2022

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

Authorized licensed use limited to: University of Gent. Downloaded on June 30,2022 at 06:54:35 UTC from IEEE Xplore. Restrictions apply.

Figure 5 reports speedup for all the evaluated techni-
ques. VR achieves a 1.79� harmonic mean speedup
across the benchmarks compared to our baseline OoO
architecture. The achieved speedup is as high as 3.6�
(Camel), 2.9� (HJ2), 2.7� (HJ8), and 2.7� (Kangaroo).
PRE on the other hand achieves a harmonic mean
speedup of 1.20� compared to the baseline—in other
words, VR achieves a speedup of 1.49� relative to PRE.
IMP cannot detect complex address-computation pat-
terns and improves speedup by only 1.19� relative to the
baseline. In short, the significant improvement in perfor-
mance achieved by VR results from much higher MLP,
while fetching in all loads within dependent sequences,
andwithout fetching irrelevant data.

VRachieveshigher performanceby threemainmecha-
nisms. The most important is the software-pipelining
effect that reordering of load instructions provides, in that
a large number of misses can be serviced simultaneously.
This same reordering when implemented with 64 scalar
micro-ops instead of eight vectormicro-ops is sufficient to
gain an average 1.47� speedup. The optimization of pack-
ing these into fewer vector operations, due to their now-
single-instruction–multiple-data (SIMD) layout, increases
performance to 1.69� by virtue of increasing the effective
processor front-end width, and requiring fewer issue-
queue slots so that loads can issue earlier. Finally, altering
the termination condition, such that VR completes the
entire chain of memory accesses before exiting, allows it
to cover longer chains of multiple main-memory accesses
rather than just the ones it can achieve before the load
instruction at the head of the ROB returns, increasing per-
formance to the full 1.79� shown in the graph.

Figure 6 shows why VR is able to achieve higher
performance. Its pipelined vectors are able to issue
many gathers to memory at once, thus hiding the seri-
alization of dependent loads observed by the OoO
core and PRE. This also shows us why some workloads

are sped up more than others. Although our baseline
OoO core features a relatively big (224-entry) ROB,
which enables it to achieve high MLP on the simplest
workloads, we note that VR can extract significantly
more MLP. Perhaps unsurprisingly, VR achieves the
largest speedups when the OoO core is comparatively
weakest: for Camel, HJ2, HJ8, and Kangaroo, there are
many instructions (address-computing or otherwise)
executing along with the loads, which starve the OoO
core of ROB and issue-queue resources,2 limiting its
memory-reordering ability. By contrast, VR does not
rely on the ROB for high MLP, as it can achieve the
same effect through its vector gathers.

Some workloads, such as G5-s16 and G5-s21, start
from a low baseline and stay relatively low even with VR:
complex control flow limits the ability of VR to cover
enough of the application’s memory accesses, in effect
throttling the vector gathers issued, particularly for the
smaller s16 input, which frequently moves between vari-
able-length data-dependent inner and outer loops.
Others, such as CG and G5-s16, have small datasets that
often hit in the LLC, meaning their L1 data cache misses
are serviced quickly with or without VR. Finally, even
though the performance of many workloads in VR mode
is limited by the number of miss status holding registers
(MSHRs), the averageMLP is still typically lower than the
number of MSHRs available (24 MSHRs at the L1 data
cache in our setup): this is because Vector Runahead
does not run continuously, and only kicks in when the
out-of-order system runs out of resources.

POTENTIAL FOR LONG-TERM
IMPACT

VR promises a transformational performance improve-
ment for some of today’smost important and challenging
workloads, all in microarchitecture. At a time when other

FIGURE 6. MLP measured in terms of MSHR entries utilized

per cycle if at least one is allocated. While PRE improves MLP

by 1.2�, vectorizing indirect chains generates 2.3� more MLP

than an OoO core.

FIGURE 5. Performance of VR execution on a baseline Intel

Skylake-style OoO core implemented in Sniper.5 VR yields a

1.79� and 1.49� harmonic mean speedup compared to the

baseline OoO core and PRE (and IMP), respectively.

July/August 2022 IEEE Micro 121

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

Authorized licensed use limited to: University of Gent. Downloaded on June 30,2022 at 06:54:35 UTC from IEEE Xplore. Restrictions apply.

methods for improving single-thread performance are
few and far between, we hope that this work will inspire
industry. While the performance improvements are signif-
icant, the extra hardware is modest. This reinvention of
runahead execution, to be based on speculative data-
level SIMDparallelism rather thanwork-skipping as its pri-
mary method for hiding memory latency, could be a fun-
damental building block for many new techniques both
inside and outside the core.

Tomorrow’s processors will be able to natively sup-
port extreme MLP, even down complex chains. The
recent scaling up of other parts of the microarchitec-
ture, such as highly parallel page-table walkers, means
that processors will be able to exploit these benefits to
the fullest. In turn, we expect processors to adapt their
configurations to accommodate forms of extreme MLP
as a result: by finally making sparse workloads band-
width-bound instead of latency-bound, we expect that
conventional processors will move to higher latency,
higher bandwidthmemory.

VR PROMISES A TRANSFORMATIONAL
PERFORMANCE IMPROVEMENT FOR
SOME OF TODAY’S MOST IMPORTANT
AND CHALLENGINGWORKLOADS,
ALL IN MICROARCHITECTURE.

VR is a qualitative departure from prior solutions. In
particular, in contrast to software auto-vectorization, VR
does not require the code to be vectorizable to ade-
quately prefetch data into the cache. In contrast to prior
runahead techniques, VR presents a solution for achiev-
ing MLP down complex dependent memory chains. In
contrast to prior pre-execution and helper-thread techni-
ques, VR needs no separate thread, no separate execu-
tion units, and neither programmer nor compiler support.
Moreover, VR can follow dependent chains, unlike pre-
execution and helper threads. In contrast to software pre-
fetching, VR is a pure microarchitecture solution, requir-
ing no changes to the binary or source code, while being
able to freely vectorize sequences of instructions that
would cause software prefetchers to fault. In contrast to
hardware prefetching, VR operates within-core, allowing
it to cover arbitrarymemory-indirection depthswith com-
plex address calculation, as needed in many workloads.4

In fact, as we have explored and demonstrated in our
ISCA 2021 paper, VR provides significant performance
improvements for modern-day workloads with complex
indirect memory-access patterns from a wide variety of

application domains including graph analytics, database,
and high-performance computing.

Note further that, while VR fundamentally exposes
more MLP than OoO execution, it is not fundamentally
reliant upon OoO execution. At a time when both OoO
execution7 and advanced prefetchers10 have both been
exposed for their inadequacies around security, VR pro-
poses a solution for the indirect memory accesses these
countermeasures restrict11 that is reliant on neither OoO
execution nor out-of-core prefetching. It can preserve
secure control flow by being an in-core technique and
even despite being speculative itself. We believe that
this could finally make such countermeasures,11 and
even in-order cores, palatablewithout severe penalty.

CONCLUSION
VR delivers on what runahead techniques were always
designed for, but could never really provide: true
latency tolerance for central processing units without
OoO resources needing to scale to unbounded dimen-
sions, even for emerging workloads with long and
complex chains of dependent memory accesses. We
believe that VR provides an opportunity for transfor-
mative improvements in single-thread performance,
favoring processor designs optimized for MLP rather
than being hampered by latency.

REFERENCES
1. S. Ainsworth and T. M. Jones, “An event-triggered

programmable prefetcher for irregular workloads,” in

Proc. 23rd Int. Conf. Archit. Support Program. Lang.

Operating Syst., 2018, pp. 578–592.

2. S. Ainsworth and T. M. Jones, “Software prefetching

for indirect memory accesses: A microarchitectural

perspective,” ACM Trans. Comput. Syst., vol. 36, no. 3,

pp. 1–34, 2019.

3. K. Asanovic et al., “The landscape of parallel

computing research: A view from Berkeley,”

2006.

4. G. Ayers, H. Litz, C. Kozyrakis, and P. Ranganathan,

“Classifying memory access patterns for

prefetching,” in Proc. 25th Int. Conf. Archit.

Support Program. Lang. Operating Syst., 2020,

pp. 513–526.

5. T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L.

Eeckhout, “An evaluation of high-level mechanistic

core models,” ACM Trans. Archit. Code Optim., vol. 11,

no. 3, pp. 1–25, 2014.

6. T.-F. Chen and J.-L. Baer, “Reducing memory latency

via non-blocking and prefetching caches,” in Proc. 5th

Int. Conf. Archit. Support Program. Lang. Operating

Syst., 1992, pp. 51–61.

122 IEEE Micro July/August 2022

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

Authorized licensed use limited to: University of Gent. Downloaded on June 30,2022 at 06:54:35 UTC from IEEE Xplore. Restrictions apply.

7. P. Kocher et al., “Spectre attacks: Exploiting

speculative execution,” in Proc. IEEE Symp. Secur.

Privacy, 2019, pp. 1–19.

8. O.Mutlu, J. Stark, C.Wilkerson, and Y. N. Patt, “Runahead

execution: An alternative to very large instruction

windows for out-of-order processors,” inProc. 9th Int.

Symp. High-Perform. Comput. Archit., 2003, pp. 129–140.

9. A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout, “Precise

runahead execution,” inProc. Int. Symp. High-Perform.

Comput. Archit., 2020, pp. 397–410.

10. J. R. S. Vicarte et al., “Opening pandora’s box: A

systematic study of new ways microarchitecture can

leak private data,” in Proc. ACM/IEEE 48th Annu. Int.

Symp. Comput. Archit., 2021, pp. 347–360.

11. J. Yu, M. Yan, A. Khyzha, A. Morrison, J. Torrellas, and

C. W. Fletcher, “Speculative taint tracking (STT): A

comprehensive protection for speculatively accessed

data,” in Proc. 52nd Annu. IEEE/ACM Int. Symp.

Microarchit., 2019, pp. 954–968.

12. X. Yu, C. J. Hughes, N. Satish, and S. Devadas, “IMP:

Indirect memory prefetcher,” in Proc. 48th Symp.

Microarchit., 2015, pp. 178–190.

AJEYA NAITHANI is a postdoctoral researcher with Ghent

University, B-9000, Ghent, Belgium. His research interests are

in the area of computer architecture with an emphasis on

designing novel techniques to improve performance, energy-

efficiency, and reliability of modern processors. Naithani

received a Ph.D. degree in computer science engineering

from Ghent University. He is a Member of IEEE. Contact him

at ajeya.naithani@ugent.be.

SAM AINSWORTH is a lecturer in systems and hardware

security with the University of Edinburgh, EH8 9AB, Edin-

burgh, U.K. His research interests include runtime, systems,

and hardware security, along with architectural and compiler

techniques for data prefetching in software and hardware,

and efficient techniques for hardware error detection and

correction. He received a Ph.D. degree in computer science

from the University of Cambridge, Cambridge, U.K. Contact

him at sam.ainsworth@ed.ac.uk.

TIMOTHY M. JONES is a reader in computer architecture and

compilation with the University of Cambridge, CB3 0FD, Cam-

bridge, U.K. His research interests span compiler and micro-

architectural schemes for performance, reliability and security,

especially focused on tackling challenges using different forms

of parallelism. Jones received a Ph.D. degree in informatics

from the University of Edinburgh, Edinburgh, U.K. Contact him

at timothy.jones@cl.cam.ac.uk.

LIEVEN EECKHOUT is a full professor with Ghent University,

B-9000, Ghent, Belgium. His research interests include com-

puter architecture performance analysis and modeling, and

CPU/GPU microarchitecture and resource management.

Eeckhout received a Ph.D. degree in computer science engi-

neering fromGhentUniversity. He is a Fellow of IEEE andACM.

Contact him at lieven.eeckhout@ugent.be.

July/August 2022 IEEE Micro 123

TOP PICKS FROM THE 2021 COMPUTER ARCHITECTURE CONFERENCES

Authorized licensed use limited to: University of Gent. Downloaded on June 30,2022 at 06:54:35 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

