
THEME ARTICLE: TOP PICKS FROM THE 2023 COMPUTER
ARCHITECTURE CONFERENCES

Decoupled Vector Runahead for Prefetching
Nested Memory-Access Chains
Ajeya Naithani , Ghent University, B-9000, Ghent, Belgium

Jaime Roelandts , Ghent University, B-9000, Ghent, Belgium

Sam Ainsworth , University of Edinburgh, EH8 9AB, Edinburgh, U.K.

Timothy M. Jones , University of Cambridge, CB3 0FD, Cambridge, U.K.

Lieven Eeckhout , Ghent University, B-9000, Ghent, Belgium

Abstract—Decoupled Vector Runahead (DVR) exploits massive amounts of
memory-level parallelism to improve the performance of applications featuring
indirect memory accesses by dynamically inferring loop bounds at run-time,
recognizing striding loads, and speculatively vectorizing subsequent instructions
that are part of an indirect chain. DVR runs as an on-demand, speculative,
in-order, lightweight hardware subthread alongside the main thread within the
core. DVR incurs a minimal hardware overhead while delivering a substantial
performance boost.

Index Terms: CPU, microarchitecture,
vector runahead, prefetching, speculative
vectorization, indirect memory accesses

O ut-of-order cores are bigger than ever, with
the latest processors featuring reorder buffers
of many hundreds of entries. And yet, al-

though modern-day out-of-order (OoO) processors are
given more than ample resources, and thus their
out-of-order queueing resources are rarely filled to
capacity, they are still memory-bound especially for
workloads that feature chains of dependent mem-
ory accesses, or indirect memory accesses. One re-
cent proposal, Vector Runahead1, presents a potential
method for doing better. Rather than work-skipping as
earlier runahead proposals do2,3,4,5 to keep uncovering
memory-level parallelism, Vector Runahead reformu-
lates the transient execution performed within runa-
head mode to be primarily based on loop-level paral-
lelism, following independent groups of many different
dependent chains of memory accesses from future

XXXX-XXX © 2024 IEEE
Digital Object Identifier 10.1109/XXX.0000.0000000

loop iterations in the program, and speculatively exe-
cuting them in a vectorized manner to reduce front-end
and back-end pipeline resource requirements. Vector
Runahead (VR) can successfully follow and prefetch
the complex memory-access patterns. However, like
the underlying out-of-order core, even with a large
reorder buffer (ROB), Vector Runahead is still memory-
bound. Because the large reorder buffer rarely fills up,
the resource starvation that triggers Vector Runahead
rarely occurs, and so its benefits over even resource-
bountiful out-of-order execution are not allowed to
shine.

Decoupled Vector Runahead (DVR) contributes
three fundamental innovations to data prefetching and
runahead execution in general, and VR in particular,
enabling effective and accurate prefetching for chal-
lenging graph analytics workloads with chains of de-
pendent memory accesses on today’s most aggres-
sive out-of-order cores. (1) DVR does not wait for
the reorder buffer in an out-of-order core to fill up
before triggering runahead execution, as performed
in traditional runahead. Instead, DVR decouples runa-
head execution by continuously monitoring the main
instruction stream and, when deemed beneficial, DVR
initiates a separate lightweight runahead subthread
to execute in-order alongside the main out-of-order
core to prefetch along multiple chains of dependent

July/August Published by the IEEE Computer Society IEEE Micro 1

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3406891

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on July 31,2024 at 08:57:00 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8291-4230
https://orcid.org/0000-0001-8937-6888
https://orcid.org/0000-0002-3726-0055
https://orcid.org/0000-0002-4114-7661
https://orcid.org/0000-0001-8792-4473

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

loads in parallel and in a vectorized manner. This
enables the main thread to continue making forward
progress while at the same time using few hardware
resources for in-order vector-runahead execution (as
opposed to traditional runahead techniques, which re-
use the main out-of-order core for prefetching). (2)
Prefetching in general is a balancing act in hiding
latency versus polluting on-chip caches and generat-
ing excessive memory bandwidth. DVR detects loop
bounds at run time in hardware to precisely deter-
mine how many parallel chains of dependent loads
to prefetch to avoid over-prefetching. (3) Prefetching
needs to be timely, which implies that one needs to
prefetch far into the future, i.e., several hundreds, if
not thousands, of instructions ahead of time. This
is challenging, particularly for graph workloads with
irregular memory-access patterns where the number
of edges per vertex determines the number of chains
of dependent loads one can prefetch in parallel. DVR
includes nesting, which enables prefetching chains
of dependent loads for multiple vertices in parallel,
thereby exposing prefetching opportunities far into the
future.

Vector Runahead
Before explaining DVR’s key innovations in more detail,
we first need to introduce Vector Runahead (VR) and
elaborate on its limitations. VR is a recently proposed
microarchitectural technique that generates high de-
grees of memory-level parallelism (MLP) by transiently
vectorizing a chain of memory accesses for the pur-
pose of prefetching. VR is a major departure from
prior runahead techniques (such as Precise Runa-
head6) that must fetch the future instruction stream
to generate speculative prefetches. More importantly,
prior runahead techniques cannot prefetch chains of
dependent memory accesses. Consequently, they de-
liver limited performance gains for graph workloads on
out-of-order processors. Instead, VR predicts the initial
addresses for multiple chains of dependent memory
accesses, and simultaneously generates prefetches for
many chains in a vectorized manner.

Figure 1 shows how VR works for a chain with
two load instructions. The first load accesses memory
in a sequential manner while the second load is an
indirect load, as it depends on the value accessed by
the first load, i.e., its memory accesses are irregular.
The otherwise underutilized processor back-end when
executing a chain of memory accesses would now be
inundated with a large number of (scalar) instructions
generated by VR. Therefore, VR combines multiple
scalar instructions into vectors and executes them in

FIGURE 1. Vector Runahead (VR) detects striding access
patterns and generates vector prefetches for the chain of
instructions originating from the striding load, via an architec-
turally transparent transient runahead execution. This allows
it to bring in complex data-dependent chains of memory
accesses that are otherwise unpredictable.

parallel on the underlying vector execution units.
While VR invented a new way of generating

prefetches even for chains of dependent memory ac-
cesses with complex address calculation patterns, it
is hampered by five key limitations. (1) VR is initiated
only after the ROB is filled with instructions. Therefore,
its performance gain decreases with increasing ROB
size. (2) VR does not adapt the vector length, i.e., the
number of scalar-equivalent (load) instructions gener-
ated for each instruction in the chain is fixed. Having
a single, fixed vector length leads to cache pollution
and wasted DRAM bandwidth for many applications.
(3) VR cannot deliver high MLP for applications with
short inner loops. (4) VR cannot generate prefetches
along diverging vector lanes after a branch instruction,
which leads to a missed opportunity for improving per-
formance. (5) VR delays the main thread from making
progress until the prefetches have been generated for
the complete indirect chain.

Decoupled Vector Runahead
Decoupled Vector Runahead (DVR) eliminates these
limitations by proposing three major contributions.

FIGURE 2. Vector Runahead’s performance improvement
diminishes with large ROBs, because it is only triggered when
the processor stalls on a full ROB.

Contribution #1: Decoupling. Runahead has tradi-
tionally been initiated after filling the reorder buffer
of an out-of-order processor6. However, this condition

2 IEEE Micro July/August 2024

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3406891

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on July 31,2024 at 08:57:00 UTC from IEEE Xplore. Restrictions apply.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

has become a limiting factor as microarchitectural
structures have continued to increase in size over
the past two decades, with modern-day processors
featuring ROBs with more than 500 entries, see for
example Intel’s Alder Lake processor7. While being an
attractive approach to trigger accurate future memory
accesses by pre-executing the application’s own code,
the usefulness of runahead techniques hinges upon
this trigger condition to fill the ROB. In fact, we find
that VR’s performance benefit over a baseline out-of-
order core diminishes from 70% for a 128-entry ROB
to merely 5% for a 512-entry ROB, see Figure 2.

Decoupling vector runahead, or liberating runahead
from its pre-condition to fill the ROB, is DVR’s first key
contribution. A stride detector in the core continuously
checks for indirect access patterns, and when it finds
one, the core initiates DVR by offloading the chain to a
separate, in-order, speculative subthread context. The
subthread speculatively vectorizes the indirect chain
and executes the generated vector instructions on the
core’s vector execution units. This subthread context
does not need out-of-order execution resources to ex-
tract high performance. In fact, the runahead subthread
executes in-order and hence it incurs limited hardware
overhead. The decoupled vector runahead subthread
executes transparently alongside the main execution
thread, which executes on the out-of-order execution
engine, i.e., the core continues to execute instruc-
tions out-of-order while the subthread prefetches future
memory accesses in-order. Speculative vectorization
by the decoupled vector runahead subthread contin-
ues until the last indirect load in the chain has been
vectorized.

Contribution #2: Loop-bound detection. A key
trade-off for prefetching, in general, is to determine
how far into the future to prefetch. More specifically
for a vector-runahead technique this translates into
determining the right number of future iterations of the
inner loop to speculatively vectorize and prefetch, as
this determines the number of dependent chains one
can prefetch in parallel. Under-prefetching leaves per-
formance on the table, while over-prefetching pollutes
the caches and wastes precious DRAM bandwidth.
Because the prior Vector Runahead technique con-
siders a fixed degree of vectorization, its effectiveness
diminishes severely for real-world graph workloads with
a varying number of edges per vertex.

Accurately determining the number of future iter-
ations by inferring loop bounds at run-time, see Fig-
ure 3a, is the second novel contribution of DVR. We
develop a set of novel microarchitectural analyses to
track loops via the existence of backwards edges in

a DVR infers loop bounds at run-time to avoid over-
prefetching large amounts of useless data.

b DVR achieves extreme memory-level parallelism even
on short inner loops, by analyzing the macro-level struc-
ture of inner- and outer-loops simultaneously to overlap
future work from many variable-length inner loops at once.

FIGURE 3. DVR employs (a) loop bound detection and (b)
nested runahead to uncover as many correct prefetches as
possible within the available vector length.

the control flow graph at run-time, using the inputs to
innermost loops (also detected at run-time) to track
remaining iterations, and mask the excess. We find
that loop-bound detection is accurate and substantially
reduces the number of excess prefetches.

Contribution #3: Nesting. For many workloads, the
number of future iterations of a loop can still be
small because many vertices in a graph may have
a small number of edges, as we observed on real-
world graphs. Initiating DVR for a small number of
future iterations only is suboptimal as the processor will
execute them in the near future regardless. Therefore,
it is critical to generate prefetches far into the future,
by prefetching several future invocations of the inner
loops. This can only be accomplished if we can target
future invocations of the loop, determine loop bounds
for each invocation, and then generate prefetches for
iterations belonging to each invocation. Nested runa-
head, the third novel contribution of DVR, achieves
this by vectorizing the outer loop to discover loop
bounds for multiple invocations of the inner loop. It then
generates prefetches for the multiple invocations of the
inner loop as illustrated in Figure 3b. This allows DVR
to jump ahead into program execution much further
than even the largest reorder buffer to find accurate
prefetches.

DVR Microarchitecture
DVR operates as follows. When the core discovers that
it is executing a loop with dependent loads, based on
a striding load that can be used to predict future loop

July/August 2024 IEEE Micro 3

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3406891

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on July 31,2024 at 08:57:00 UTC from IEEE Xplore. Restrictions apply.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

PC
(Calculation +

Prediction)

Fetch Decode Rename Dispatch Issue Execute Commit

ROB

Loop Bound Detector

VectorizerVRAT

Decision Logic

NDM
Logic

Buffer

Reconvergence
Stack

Vector Issue
Register

Existing Structures Decoupled Vector Runahead Nested Discovery ModeDiscovery Mode Branch Reconvergence

Stride
DetectorPCv

Taint
Tracker

Stride
Detector

FIGURE 4. DVR processor pipeline.

iterations, a specialized vector-runahead subthread is
activated on the same core as the currently executing
main thread. This subthread is dynamically generated
to prefetch many memory accesses into the future, but
without affecting the semantics of the main thread. The
vector-runahead subthread runs alongside the main
thread on the same core, much like how threads co-
execute in simultaneous multithreading (SMT)8, except
that the subthread is microarchitecturally generated,
transparent to software, transient (to prefetch into the
cache rather than achieve real computation), specu-
lative, reordered to achieve extremely high memory-
level parallelism, and significantly simpler, i.e., the sub-
thread executes in-order. The vector-runahead sub-
thread is also closely related to simultaneous subor-
dinate microthreading9, which also aims at improving
performance of the main thread. Whereas a subor-
dinate microthread is written in microcode featuring
specialized machine-specific instructions, the vector-
runahead subthread is dynamically generated and de-
rived from the main application thread.

To achieve high memory-level parallelism from this
in-order vector-runahead subthread, even while follow-
ing chains of dependent loads that stall the subthread,
we use single-instruction multiple-thread (SIMT) data-
level parallelism, to execute large numbers of each in-
struction from the front-end, each representing a differ-
ent loop iteration, simultaneously, thereby prefetching
far into the future. Since this happens continuously, and
overlaps with the execution of the main thread, most
of the main out-of-order thread’s memory accesses hit
in the L1 cache by the time it reaches them — thus
even for very large processors with massive windows,
significant speedups can be achieved.

Figure 4 provides a schematic of a processor’s mi-
croarchitecture enhanced to support DVR. The stride

detector obtains information about loads from the dis-
patch and execute stages of the pipeline. Once a stride
is detected, DVR enters Discovery Mode, which uses
the Taint Tracker and Loop-Bound Detector to discover
information for the subsequent vector-runahead exe-
cution, i.e., it determines how many loop iterations to
speculatively vectorize and thus generate prefetches
for. The Nested Discovery Mode logic will be used if
Discovery Mode finds too few elements of the loop to
vectorize, and if so, multiple future invocations of the
inner loop will be speculatively vectorized by analyzing
the outer loop. Once Discovery Mode is complete, the
vector program counter (PCv) will be populated with
the PC of the striding load, the VRAT will be populated
with the striding load addresses and a copy of the main
thread’s scalar registers, and the decoupled vector-
runahead subthread will initiate. The Reconvergence
Stack will engage upon divergence in control-flow be-
tween the vector lanes.

We refer to the conference paper10 for details about
the implementation. Overall, DVR requires minimal
changes to the processor pipeline and incurs only
1,139 bytes of overhead.

Key Results
Figure 5 shows the key results for DVR assuming a
baseline 350-entry ROB out-of-order core. Across a
wide set of complex graph analytics, database and
high-performance computing (HPC) applications on
modern-sized cores, DVR offers a considerably higher
average speedup of 2.4× versus 1.2× for VR. While
VR improves performance by 1.2×, decoupling in-
creases the performance speedup by 1.5×. Eliminating
incorrect prefetches through loop bound detection fur-
ther increases the performance to 1.8×. Nested runa-

4 IEEE Micro July/August 2024

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3406891

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on July 31,2024 at 08:57:00 UTC from IEEE Xplore. Restrictions apply.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

0.0

1.0

2.0

3.0

4.0

bc bfs cc pr sssp hpc-db H-mean

N
o

m
al

iz
ed

 IP
C

VR Decoupled +Loop Bound Detection +Nested

FIGURE 5. Breaking down DVR’s performance normalized
to a baseline out-of-order (OoO) core with a 350-entry ROB:
(1) Vector Runahead 1, (2) ‘Decoupled’ triggers a vector-
runahead subthread whenever a stride is detected, (3) ‘+Loop
Bound Detection’ further improves prefetch accuracy, and (4)
‘+Nested’ completes DVR by prefetching over multiple short
inner loops.

0.0

0.5

1.0

1.5

2.0

2.5

3.0

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

V
R

D
V

R

bc bfs cc pr sssp hpc-db Avg

Fr
ac

ti
o

n
 M

em
o

ry
 A

cc
es

se
s

Normal Mode Runahead Mode

FIGURE 6. Number of off-chip memory accesses for VR and
DVR normalized to OoO, and fraction of memory accesses
in normal versus runahead execution mode. VR substan-
tially over-prefetches in contrast to DVR which accurately
prefetches most memory accesses.

head successfully prefetches across many invocations
of the same loop for vertices with a small number of
edges, and propels the performance to an overall 2.4×
speedup compared to the baseline out-of-order core.

Figure 6 shows both the total number of main
memory accesses performed, and the fraction within
the main thread and runahead mode or subthread.
Both DVR and VR are given for comparison, relative
to the same out-of-order baseline. DVR is extremely
accurate because of its Discovery Mode, over-fetching
only 3.7% compared to the baseline. By contrast,
Vector Runahead over-fetches by on average 85.6%
because it lacks loop-length analysis. As well as being
more accurate, DVR also covers far more of each ap-
plication during runahead execution, due to triggering
more eagerly, and because Nested Mode prefetches
multiple future loop invocations.

Figure 7 shows that the performance of DVR con-
tinues to increase with increasing ROB sizes. This

0.0

1.0

2.0

3.0

4.0

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

1
2

8
1

9
2

2
2

4
3

5
0

5
1

2

bc bfs cc pr sssp hpc-db H-mean

IP
C

 N
o

rm
al

iz
ed

 t
o

 t
h

e
O

o
O

B
as

el
in

e
(R

O
B

=3
5

0
)

OoO DVR

FIGURE 7. Performance of DVR with increasing ROB size,
relative to a baseline out-of-order core with a 350-entry ROB.

demonstrates that DVR is indeed future-proof, unlike
any of the prior runahead techniques, including VR.

Looking Forward
Decoupled Vector Runahead (DVR) completes the job
started by VR. While VR offered a whole new form
of memory-level parallelism, invisible at the program-
mer’s interface, we believe that DVR is the missing
link that will allow the concept of vector runahead to
attain widespread commercial viability and adoption.
As aforementioned, we believe that DVR contributes
three fundamental innovations that substantially ad-
vance the state-of-the-art in data prefetching in general
and (vector) runahead execution in particular, for some
of the most challenging workloads (graph analytics with
irregular and dependent chains of memory accesses).
Decoupling, loop-bound detection, and nesting enable
vector runahead execution to run continuously, using
a lightweight in-order subthread context, prefetching
far into the future without polluting the on-chip caches
and without generating excess prefetches, while at the
same time continuing to be effective for out-of-order
cores with increasingly large ROB sizes.

The workloads targeted by DVR are not only chal-
lenging, they also greatly matter: many emerging work-
loads from graph applications to machine learning
demand a tremendous performance boost from today’s
underlying hardware. Application-specific hardware,
i.e., accelerators, have undoubtedly been a dominant
focus in the past decade. However, they are still a
‘part’ of the chip as the simplicity and programmability
of general-purpose processors is difficult to outshine.
DVR offers a tempting and tremendous performance
improvement for graph workloads on today’s general-
purpose CPUs.

At the same time, DVR is simple to implement. Its
extreme memory-level parallelism ability through vec-
torization obviates the need for out-of-order execution

July/August 2024 IEEE Micro 5

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3406891

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on July 31,2024 at 08:57:00 UTC from IEEE Xplore. Restrictions apply.

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

capabilities in the runahead subthread. In fact, the de-
coupled vector-runahead subthread running alongside
the main execution thread context executes in program
order while sharing the vector units with the main
core. We hence believe that DVR has the potential
to be deployed beyond the aggressive out-of-order
cores with large ROBs as considered in this work,
everywhere in the device stack: from smartphones to
high-end servers. Indeed, as we have demonstrated in
this work, DVR is equally effective for small-ROB archi-
tectures as it is for large-ROB architectures. We want
to go even further than that: the form of parallelism
we have discovered (i.e., parallel chains of dependent
loads exposed through speculative vectorization) is so
simple, that there is no reason to believe that it cannot
be repurposed in pure in-order cores, where resources
are even tighter and parallelism is even harder to find.

The extremely high performance of DVR is only
possible because of a combination of novel analy-
sis techniques that are likely to bear fruit in many
other scenarios. In particular, DVR ends up discovering
complex properties of loop control-flow in order to
look far into the future. Questions about the fusion
of techniques such as branch runahead11 and vector
runahead become inevitable. This potentially opens
up new optimization goals other than memory-level
parallelism, bringing it into the standard set of tools
architects use to extract new forms of performance.
Indeed, what further classes of applications might it be
able to accelerate, with a wider definition of induction
variables than the one currently inferred by looking
at sequential stride loads? It is likely that the broad
approach can pay dividends by marching ahead into
many kinds of diverse loop structures.

Note further that DVR is also a form of speculative
parallelism, albeit one that receives significant gains
from not having to obey any correctness guarantees
with respect to data dependencies or ordering. Indeed,
its primary targets are workloads that modern vector-
izers in optimizing compilers will not touch. However,
many insights from DVR bring about a new generation
of mechanisms that are able to speculate and roll back
on data dependencies, able to parallelize compute as
well as memory accesses, all while achieving orders of
magnitude higher MLP than today’s basic-block-scale
vectorizers.

Conclusion
Decoupled Vector Runahead offloads the runahead
execution to a simple, in-order, SIMT, vector subthread
that is initiated whenever the core detects an indirect
memory access pattern. Unlike prior runahead tech-

niques, DVR does not wait for the reorder buffer to
stall, and by discovering the loop bound at run-time,
it can adjust the degree of vectorization to better suit
application characteristics. DVR generates prefetches
from multiple invocations of a loop when the discovered
degree of vectorization for one invocation is not suffi-
cient to achieve high memory-level parallelism. DVR
incurs minimal hardware overhead while delivering a
substantial performance boost for some of the most
challenging graph workloads.

The benefits of reordering-based runahead over
invalidation runaheads will usher in a new era of
processors with the latency insensitivity of GPUs while
maintaining the programmability and single-threaded
performance of CPUs. In an era where single-threaded
performance is so difficult to enhance, we suspect
that a radical yet easy-to-implement and application-
transparent solution like DVR holds significant poten-
tial.

Acknowledgments
This work is supported in part by the UGent-BOF-
GOA grant No. 01G01421, the Research Foundation
Flanders (FWO) grant No. G018722N, the European
Research Council (ERC) Advanced Grant agreement
No. 741097, and the Engineering and Physical Sci-
ences Research Council (EPSRC) grant reference
EP/W00576X/1. Additional data related to this publi-
cation is available on request from the lead author.

REFERENCES
1. A. Naithani, S. Ainsworth, T. M. Jones, and

L. Eeckhout, “Vector runahead,” in Proceedings
of the 48th Annual International Symposium
on Computer Architecture, ser. ISCA ’21. Los
Alamitos, CA, USA: IEEE Computer Society,
2021, p. 195–208. [Online]. Available: https:
//doi.org/10.1109/ISCA52012.2021.00024

2. J. Dundas and T. Mudge, “Improving data cache
performance by pre-executing instructions under
a cache miss,” in Proceedings of the 11th
International Conference on Supercomputing, ser.
ICS ’97. New York, NY, USA: Association for
Computing Machinery, 1997, p. 68–75. [Online].
Available: https://doi.org/10.1145/263580.263597

3. O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt,
“Runahead execution: An alternative to very large
instruction windows for out-of-order processors,”
in The Ninth International Symposium on High-
Performance Computer Architecture, 2003. HPCA-
9 2003. Proceedings. Los Alamitos, CA, USA:

6 IEEE Micro July/August 2024

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3406891

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on July 31,2024 at 08:57:00 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/ISCA52012.2021.00024
https://doi.org/10.1109/ISCA52012.2021.00024
https://doi.org/10.1145/263580.263597

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

IEEE Computer Society, Feb 2003, pp. 129–140.
[Online]. Available: https://doi.org/10.1109/HPCA.
2003.1183532

4. O. Mutlu, H. Kim, and Y. N. Patt, “Techniques
for efficient processing in runahead execution
engines,” in Proceedings of the 32nd Annual In-
ternational Symposium on Computer Architecture,
ser. ISCA ’05. Los Alamitos, CA, USA: IEEE
Computer Society, 2005, p. 370–381. [Online].
Available: https://doi.org/10.1109/ISCA.2005.49

5. M. Hashemi and Y. N. Patt, “Filtered
runahead execution with a runahead buffer,” in
Proceedings of the 48th International Symposium
on Microarchitecture, ser. MICRO-48. New
York, NY, USA: Association for Computing
Machinery, 2015, p. 358–369. [Online]. Available:
https://doi.org/10.1145/2830772.2830812

6. A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout,
“Precise runahead execution,” in 2020 IEEE
International Symposium on High Performance
Computer Architecture (HPCA). Los Alamitos,
CA, USA: IEEE Computer Society, Feb 2020,
pp. 397–410. [Online]. Available: https://doi.org/
10.1109/HPCA47549.2020.00040

7. E. Rotem, A. Yoaz, L. Rappoport, S. J.
Robinson, J. Y. Mandelblat, A. Gihon,
E. Weissmann, R. Chabukswar, V. Basin,
R. Fenger, M. Gupta, and A. Yasin, “Intel Alder
Lake CPU architectures,” IEEE Micro, vol. 42,
no. 3, pp. 13–19, 2022. [Online]. Available:
https://doi.org/10.1109/MM.2022.3164338

8. D. M. Tullsen, S. J. Eggers, and H. M.
Levy, “Simultaneous multithreading: Maximizing
on-chip parallelism,” in Proceedings of the
22nd Annual International Symposium on
Computer Architecture, ser. ISCA ’95. New
York, NY, USA: Association for Computing
Machinery, 1995, p. 392–403. [Online]. Available:
https://doi.org/10.1145/223982.224449

9. R. S. Chappell, J. Stark, S. P. Kim, S. K. Reinhardt,
and Y. N. Patt, “Simultaneous subordinate
microthreading (SSMT),” in Proceedings of
the 26th Annual International Symposium
on Computer Architecture, ser. ISCA ’99.
Los Alamitos, CA, USA: IEEE Computer
Society, 1999, p. 186–195. [Online]. Available:
https://doi.org/10.1145/300979.300995

10. A. Naithani, J. Roelandts, S. Ainsworth,
T. M. Jones, and L. Eeckhout, “Decoupled
vector runahead,” in Proceedings of the 56th
Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’23. New
York, NY, USA: Association for Computing

Machinery, 2023, p. 17–31. [Online]. Available:
https://doi.org/10.1145/3613424.3614255

11. S. Pruett and Y. Patt, “Branch runahead: An
alternative to branch prediction for impossible
to predict branches,” in MICRO-54: 54th
Annual IEEE/ACM International Symposium
on Microarchitecture, ser. MICRO ’21. New
York, NY, USA: Association for Computing
Machinery, 2021, p. 804–815. [Online]. Available:
https://doi.org/10.1145/3466752.3480053

Ajeya Naithani is a postdoctoral researcher at Ghent
University, Belgium. His research interests are in the
area of computer architecture with an emphasis on
designing novel techniques to improve performance,
energy-efficiency, and reliability of modern processors.
He received the PhD degree in computer science engi-
neering from Ghent University in 2019. Contact him at
ajeya.naithani@ugent.be.

Jaime Roelandts is a PhD student at Ghent Univer-
sity, Belgium. His research interests include computer
architecture with an emphasis on simulation and graph
processing. He received the MSc degree in computer
science engineering from Ghent University in 2020.
Contact him at jaime.roelandts@ugent.be.

Sam Ainsworth is a research consultant working in
industry, and a Visitor at the University of Edinburgh,
where he supervises two PhD students. His research
looks at runtime, systems and hardware security, along
with architectural and compiler techniques for data
prefetching in software and hardware, and efficient
techniques for hardware error detection and correc-
tion. He received a PhD in Computer Science from
the University of Cambridge in 2018. Contact him at
sam.ainsworth@ed.ac.uk.

Timothy M. Jones is a Full Professor in Computer
Architecture and Compilation at the University of Cam-
bridge. His research interests span compiler and mi-
croarchitectural schemes for performance, reliability
and security, especially focused on tackling challenges
using different forms of parallelism. He received a PhD
in Informatics from the University of Edinburgh in 2006.
Contact him at timothy.jones@cl.cam.ac.uk.

Lieven Eeckhout is a Full Professor at Ghent Uni-
versity, Belgium. His research interests include com-
puter architecture performance analysis and modeling,
CPU/GPU microarchitecture and resource manage-
ment, and sustainability. He received a PhD degree in
computer science engineering from Ghent University in

July/August 2024 IEEE Micro 7

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3406891

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on July 31,2024 at 08:57:00 UTC from IEEE Xplore. Restrictions apply.

https://doi.org/10.1109/HPCA.2003.1183532
https://doi.org/10.1109/HPCA.2003.1183532
https://doi.org/10.1109/ISCA.2005.49
https://doi.org/10.1145/2830772.2830812
https://doi.org/10.1109/HPCA47549.2020.00040
https://doi.org/10.1109/HPCA47549.2020.00040
https://doi.org/10.1109/MM.2022.3164338
https://doi.org/10.1145/223982.224449
https://doi.org/10.1145/300979.300995
https://doi.org/10.1145/3613424.3614255
https://doi.org/10.1145/3466752.3480053

TOP PICKS FROM THE 2023 COMPUTER ARCHITECTURE CONFERENCES

2002. He is an IEEE and ACM Fellow. Contact him at lieven.eeckhout@ugent.be.

8 IEEE Micro July/August 2024

This article has been accepted for publication in IEEE Micro. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/MM.2024.3406891

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.

See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: University of Gent. Downloaded on July 31,2024 at 08:57:00 UTC from IEEE Xplore. Restrictions apply.

	Vector Runahead
	Decoupled Vector Runahead
	DVR Microarchitecture
	Key Results
	Looking Forward
	Conclusion
	Acknowledgments
	Biographies
	Ajeya Naithani
	Jaime Roelandts
	Sam Ainsworth
	Timothy M. Jones
	Lieven Eeckhout

