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Superscalar out-of-order cores deliver high performance at the cost of increased complexity and power budget.
In-order cores, in contrast, are less complex and have a smaller power budget, but offer low performance.
A processor architecture should ideally provide high performance in a power- and cost-efficient manner.
Recently proposed slice-out-of-order (sOoO) cores identify backward slices of memory operations which they
execute out-of-order with respect to the rest of the dynamic instruction stream for increased instruction-level
and memory-hierarchy parallelism. Unfortunately, constructing backward slices is imprecise and hardware-
inefficient, leaving performance on the table.

In this paper, we propose Forward Slice Core (FSC), a novel core microarchitecture that builds on a stall-on-
use in-order core and extracts more instruction-level and memory-hierarchy parallelism than slice-out-of-order
cores. FSC does so by identifying and steering forward slices (rather than backward slices) to dedicated in-
order FIFO queues. Moreover, FSC puts load-consumers that depend on L1 D-cache misses on the side to
enable younger independent load-consumers to execute faster. Finally, FSC eliminates the need for dynamic
memory disambiguation by replicating store-address instructions across queues. Considering 3-wide pipeline
configurations, we find that FSC improves performance by 27.1%, 21.1% and 14.6% on average compared
to Freeway, the state-of-the-art sOoO core, across SPEC CPU2017, GAP and DaCapo, respectively, while
at the same time incurring reduced hardware complexity. Compared to an OoO core, FSC reduces power
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consumption by 61.3% and chip area by 47%, providing a microarchitecture with high performance at low
complexity.
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1 INTRODUCTION
Modern processors are designed to either deliver high performance or provide high energy efficiency.
The two ends of the spectrum are represented by superscalar out-of-order (OoO) and in-order (InO)
cores, respectively. To deliver high performance, OoO cores are power-hungry due to their high
design complexity and large chip area. InO cores, on the other hand, consume significantly less
power as a consequence of their much simpler design and smaller chip area. An ideal processor
design, however, should deliver high performance at a small chip area and power overhead. This is
of particular importance in the huge and continuously growing mobile and embedded markets. In
particular, the number of smartphone users is continuously increasing reaching close to 4 billion
users around the world this year [39]; further, projections estimate 50 billion Internet-of-Things (IoT)
devices by 2030 [38]; finally, the 5G market is expected to involve 666 million devices [30]. Mobile
and edge devices need increasingly high performance at low cost and low power consumption.
Although in-order cores are highly energy-efficient, their in-program order execution model

severely restricts performance compared to OoO cores. Recently, slice-out-of-order (sOoO) core
microarchitectures have been proposed to address the in-order issue bottleneck by allowing the
execution of load and store instructions, plus their backward slices (i.e., the address-generating
sequence of instructions leading up to these memory operations), to bypass arithmetic instructions
in the dynamic instruction stream. The sOoO cores are restricted out-of-order machines that
add modest hardware overhead upon a stall-on-use in-order core to improve instruction-level
parallelism (ILP) as well as memory-hierarchy parallelism (MHP).1 Load Slice Core (LSC) [9] was the
first work to propose an sOoO core; Freeway [20] builds upon the LSC proposal and exposes more
MHP than LSC by adding one more in-order queue for uncovering additional independent loads.
LSC and Freeway identify the address-generating instructions (AGIs) of loads and stores in an

iterative manner using a hardware mechanism called Iterative Backward Dependence Analysis (IBDA).
The loads, store-address operations and AGIs execute through a separate bypass queue (B-queue),
while all other instructions execute from the main, arithmetic queue (A-queue). Kumar et al. [20]
observe that, in LSC, an independent load may be stuck behind a load that depends on an older
long-latency memory load, unnecessarily limiting the exploitable MHP. They therefore propose
the Freeway microarchitecture, which adds one more in-order queue for putting dependent loads
on the side so that younger independent loads can go ahead and execute.

Table 1 compares the InO, LSC, Freeway and OoO microarchitectures in terms of ILP, MHP and
design complexity. Since both LSC and Freeway execute instructions from multiple queues, the
degree of ILP exposed by sOoO cores is higher than an in-order core. sOoO cores expose substantially

1We refer to MHP to denote parallelism across the memory hierarchy including the various levels of cache and main
memory. Formally, MHP is defined as the average number of overlapping memory accesses that hit anywhere in the cache
hierarchy, including main memory.
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Table 1. Comparing FSC against prior slice-out-of-order microarchitectures in terms of ILP, MHP and
hardware complexity. FSC offers higher ILP and MHP than LSC and Freeway at lower hardware overhead.

Processor Design ILP MHP Hardware Complexity
InO − − +
LSC + + +++

Freeway ++ ++ +++
FSC +++ +++ ++
OoO ++++ ++++ +++++++

higher MHP by allowing independent loads and their backward slices to execute ahead of older
(possibly stalled) instructions. Unfortunately, IBDA requires dedicated hardware. More specifically,
LSC and Freeway rely on two structures, namely the Register Dependence Table (RDT) and the
Instruction Slice Table (IST), for identifying backward slices. Not only do the RDT and IST incur
hardware overhead, IBDA is also imperfect. In particular, a workload for which the code footprint
is too big to fit within the IST may lead to IST misses. Moreover, iteratively constructing backward
slices leads to imprecise backward slices, further limiting the exploitable MHP. Another source of
increased complexity lies in memory disambiguation. The LSC eliminates the need for dynamic
memory disambiguation by executing all memory instructions in program order from the B-queue.
In Freeway on the other hand, memory instructions can execute out-of-order, which requires
expensive content-addressable hardware support for correctly handling memory dependences. In
summary, backward slice analysis is imprecise and adds hardware complexity; Freeway further
increases complexity by requiring hardware support for dynamic memory disambiguation.

In this paper, we propose Forward Slice Core (FSC), a novel core microarchitecture, that builds on
a stall-on-use in-order core but achieves higher ILP and MHP compared to prior sOoO cores at
lower hardware cost. In contrast to sOoO cores which target backward slices of both loads and
stores, the FSC targets forward slices of only loads. A forward slice consists of the direct and indirect
dependents of a load that are yet to be executed. At dispatch time, all instructions — including
loads — that are not part of a forward slice are steered to an in-order FIFO queue, the so-called
Main Lane (ML). This enables the execution of instructions that are independent of older loads
to execute as soon as possible. Forward-slice instructions are steered to dedicated FIFO queues:
loads are sent to the Dependent Load Lane (DLL) and non-loads are sent to the Dependent Execute
Lane (DEL). Instructions that wait at the head of the DEL for more than a preset number of cycles
(i.e., the L1 D-cache access time) are sent to the Holding Lane (HL) to enable instructions that are
independent of L1 D-cache misses to be selected for execution. The four in-order queues (ML, DEL,
DLL and HL) issue instructions in program order, but operate out-of-order with respect to each
other, i.e., instructions at the head to the queues are selected for execution on a functional unit as
soon as their register dependences have been resolved.
There are three key differences that set the FSC microarchitecture apart from prior work. First,

FSC operates on forward slices rather than backward slices. This simplifies the hardware: building
forward slices can be done in a single pass whereas constructing backward slices requires multiple
passes using dedicated RDT and IST hardware structures. Second, FSC drains all DEL instructions
waiting on an L1 D-cache miss to a separate Holding Lane. These instructions cause the longest
performance stalls in an in-order core, and re-directing them to a separate queue accelerates the
execution of younger independent instructions. Third, FSC performs memory disambiguation in a
novel manner through store-address replication (SAR). When dispatching a store instruction, FSC
replicates the store-address micro-op across the FIFO queues. The store-address micro-op is issued
to a functional unit only when all copies of the micro-op are at the heads of their respective queues.
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This ensures that loads can never bypass older stores, i.e., loads always execute in program order
with respect to older stores. SAR greatly simplifies dynamic memory disambiguation, in contrast
to Freeway, which requires expensive content-addressable memory (CAM) look-ups prior to the
execution of a load to verify there are no prior unresolved and aliasing stores.
As summarized in Table 1, FSC achieves higher ILP and MHP at less hardware complexity

compared to the previously proposed sOoO processors. FSC achieves higher MHP by focusing on
forward slices rather than backward slices. Backward slice construction is an iterative and imperfect
process, in contrast to identifying forward slices. FSC achieves higher ILP by steering arithmetic
instructions across multiple lanes, and by re-directing instructions that depend on L1 D-cache
misses to the Holding Lane, paving the way for younger independent arithmetic instructions to
execute. FSC reduces hardware complexity by eliminating the need for dedicated RDT and IST
hardware tables and by eliminating the need for expensive memory disambiguation support.
We experimentally evaluate the proposed FSC microarchitecture through detailed cycle-level

simulation using the SPEC CPU2017, GAP (graph analytics) and Java DaCapo benchmarks across
microarchitecture configurations representative of (high-end) superscalar embedded and mobile
processors. The overall key conclusion is that FSC outperforms Freeway, the state-of-art sOoO core
microarchitecture, by a significant margin. We report an average 15.7%, 6.9% and 10.1% improvement
over Freeway for SPEC CPU2017, GAP and DaCapo, respectively, assuming a 2-wide superscalar
configuration. The performance improvement increases to 27.1%, 21.1% and 14.6%, respectively, for
a 3-wide superscalar configuration. We further find that the performance gain through FSC over
an InO baseline is more robust across the three benchmark suites, i.e., compared to a 3-wide InO
baseline, FSC yields a consistent 76.8% to 79.2% performance improvement (2.4 percentage point
variance) across the three benchmark suites, versus 41.1% to 54.1% (13 percentage point variance)
for Freeway. The fundamental reason for the consistent performance gain is that FSC improves
both ILP and MHP. While prior sOoO microarchitectures primarily improve performance for MHP-
intensive workloads, FSC is effective for a broader range of workloads with varying characteristics
in ILP and MHP, i.e., different workloads benefit in different ways. We argue that FSC is more
hardware-efficient (requiring 1,408 less bytes) than the state-of-the-art sOoO microarchitecture
Freeway. We further find that FSC performs within 6.0% and 12.8% of a 2-wide and 3-wide out-of-
order processor, while consuming 56.7% and 61.3% less power and while incurring 37% and 47%
less chip overhead, respectively. Finally, we find that FSC’s performance gain over an InO baseline
increases with hardware prefetching enabled.

2 BACKGROUND ANDMOTIVATION
In this section, we briefly cover the background on the two prior sOoO cores — LSC [9] and
Freeway [20] — and we elaborate on their shortcomings. Figure 1 provides a schematic overview of
the two sOoO core microarchitectures.

2.1 Load Slice Core
In a stall-on-use in-order core, an instruction that depends on a load miss stalls the head of the
issue queue. The processor is stalled for tens up to hundreds of cycles depending on where the miss
is serviced, i.e., the next level of cache or main memory. This hinders future independent loads
from accessing the memory hierarchy. To be able to issue independent loads as soon as possible,
LSC separates loads and their backward slices, i.e., the Address-Generating Instructions (AGIs), into
a separate in-order queue, called the bypass queue or B-queue. All other instructions — primarily
arithmetic instructions — are issued from the arithmetic queue or A-queue. Store instructions
are broken down into store-address (STA) and store-data (STD) micro-ops; the STA micro-op is
dispatched to the B-queue (along with its AGIs), whereas the STD micro-op is dispatched to the
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Fig. 1. Slice-out-of-order cores: LSC and Freeway add a number of new structures color-coded in gray and
orange, respectively. LSC steers loads and their backward-slices to the B-queue. Freeway in addition steers
dependent backward slices to the Y-queue. Non-backward-slice instructions are steered to the A-queue in both LSC
and Freeway.

A-queue. Sending the instructions that depend on a load to the A-queue enables LSC to extract more
MHP from the instruction stream compared to an in-order core, i.e., multiple independent loads
can issue in parallel from the B-queue even if there are load-dependent instructions in-between
those loads in the instruction stream. Although instructions are issued in program order from the
A- and B-queues, they can be issued out-of-order with respect to each other.

Identifying backward slices incurs additional hardware. LSC uses a mechanism called Iterative
Backward Dependency Analysis (IBDA) to do so: backward slices are identified iteratively across
multiple executions of the same code (e.g., multiple iterations of the same loop or multiple in-
vocations of the same function). IBDA relies on two dedicated hardware structures as shown in
Figure 1. LSC piggybacks on register renaming by adding a new hardware structure, called the
Register Dependence Table (RDT), to identify the AGIs leading to a load instruction in an iterative
manner. The backward-slice instructions identified by IBDA are stored in a dedicated cache, called
the Instruction Slice Table (IST). Future occurrences of AGI instructions in the instruction stream
are identified by consulting the IST: an instruction is considered a backward-slice instruction if it
hits in the IST — if so, the instruction is steered to the B-queue. According to our experimental
results using SPEC CPU2017, LSC achieves 35% higher performance than an InO core.

2.2 Freeway
While steering load-dependent instructions to a separate A-queue paves the way for more loads to
access the memory hierarchy in parallel, LSC still serializes all loads from the B-queue. In particular,
in case of load-dependent loads, i.e., a load that depends on a older load, the head of the B-queue
stalls on the dependent load. Therefore, younger independent loads behind the dependent load
cannot issue to the memory hierarchy, hindering the opportunity to expose MHP.

Kumar et al. [20] propose Freeway, a coremicroarchitecture that overcomes LSC’sMHP bottleneck
caused by load-dependent loads. Freeway splits a slice that contains multiple loads into two types: a
producer slice and a dependent slice. The producer slice ends with a load; the dependent slice starts
after the load, and ends on another load. Freeway steers the dependent slice to a new in-order queue
called the yielding queue or Y-queue. Parking dependent slices in the Y-queue enables Freeway to
issue independent slices from the B-queue, exposing more MHP than LSC. The dependent slices
from the Y-queue are issued to the memory hierarchy when their producer slices finish execution.
By exposing more MHP, Freeway achieves 4% higher performance than LSC (according to our
experimental results). Freeway adds complexity over LSC by adding a third queue and, more
importantly, by requiring memory disambiguation to allow out-of-order execution of loads and
stores, as we will discuss in the next section.
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Fig. 2. CPI stacks for the SPEC CPU2017 benchmarks (sorted by LLCMPKI from left to right) on a stall-on-use
in-order core. Compute-intensive workloads frequently stall on L1/L2 load consumers, whereas memory-intensive
workloads frequently stall on memory-access consumers.

2.3 Shortcomings of Slice-Out-of-Order Cores
There are four major shortcomings with prior sOoO cores which we address in this work.
Limited Instruction-Level Parallelism. The sOoO cores are fundamentally limited in the way
they can extract instruction-level parallelism (ILP) from the dynamic instruction stream. The reason
is that younger independent instructions may be stuck behind load-consumers. In particular, an
instruction waiting for a load to return from the memory hierarchy may stall the head of the
A-queue for a few cycles (in case of an on-chip cache hit) or for many cycles (in case of an off-chip
memory access). None of the instructions in the A-queue can be issued until the stall resolves, even
if the instructions are independent of the instruction stalling at the head of the A-queue.

Figure 2 supports this by showing normalized CPI stacks for the SPEC CPU2017 benchmarks on
a stall-on-use in-order core. (Please refer to Section 4 for details regarding the experimental setup.)
These normalized CPI stacks report the fraction stall cycles due to a consumer of an L1 D-cache
access, an L2/LLC D-cache access2 or a main memory access; the remaining cycles are classified
as ‘other’. (The benchmarks in Figure 2 are sorted from left to right by increasing number of LLC
misses per-kilo instructions (MPKI).) Memory-intensive benchmarks, appearing on the right-hand
side of the figure, spend the majority of their time waiting for data to return from main memory.
Compute-intensive benchmarks, on the left-hand side of the figure, spend almost half of their total
execution time waiting for L1 and L2 D-cache accesses. This suggests that allowing instructions
that are independent of on-chip cache hits and their consumers to execute ahead, can significantly
improve ILP for the compute-intensive workloads.
Limited Memory-Hierarchy Parallelism. sOoO cores expose higher degrees of MHP compared
to InO cores, which is beneficial for memory-intensive benchmarks. However, the MHP on sOoO
cores is still limited by at least two factors. First, sOoO cores rely on the IBDA mechanism to
identify AGIs. IBDA is supported by the IST hardware structure which is of limited size. Hence, if
the total set of AGIs for a particular workload (i.e., a workload with a large code footprint) exceeds
the size of the IST, this may lead to IST misses which will cause AGIs to be sent to the A-queue and
which will hinder the level of MHP that can be extracted.

Second, backward slice analysis is an iterative and imprecise process. As a result, while building
up the backward slices, AGIs will be sent to the A-queue, which also hinders the exploitable MHP.
Finally, and more specifically to Freeway, dependent slices serialize in the Y-queue. Hence, a

dependent slice which gets stalled in the Y-queue may hinder a younger independent slice in the
Y-queue to execute. So, in conclusion, the bottomline is that even though sOoO cores significantly
improve the achievable MHP over an in-order core, there is still room for improvement.

2We consider a two-level hierarchy: L2 is the last-level cache (LLC).
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Fig. 4. IPC performance degradation for the DaCapo benchmarks when comparing an unrealistically large
2K-entry IST versus the baseline 128-entry IST as a function of (128-entry) IST miss rate. High IST miss rate
leads to performance degradation.

IST Misses. The IST employed in LSC and Freeway to identify backward slices is a cache structure
of limited size which may limit performance. Figure 3(a) reports the IST miss rate as a function of its
size for SPEC CPU2017 and the Java DaCapo benchmarks in Freeway.3 We observe a significantly
higher IST miss rate for DaCapo versus SPEC CPU2017: we report an average miss rate of 31%
versus 18% for DaCapo and SPEC, respectively, for a 128-entry 2-way set-associative IST (our
baseline); likewise, we report an average miss rate of 7.4% versus 2.6%, respectively, for a 2048-entry
IST. The higher IST miss rate is a result from the larger code footprint for DaCapo — we report an
approximately 3× higher I-cache miss rate for DaCapo versus SPEC CPU2017. The high IST miss
rate negatively affects performance as shown in Figure 4 which reports performance degradation
for DaCapo of a 128-entry IST versus a 2048-entry IST as a function of IST miss rate. This leads to
two observations: (i) IST miss rate correlates negatively with performance, i.e., increased IST miss
rate leads to performance degradation, and (ii) even an unrealistically large (2K-entry) IST does not
dramatically improve performance (by a couple percent only for this set of benchmarks), which
further motivates the need for a different sOoO architecture paradigm.
Hardware Complexity. sOoO cores incur hardware overhead over in-order cores. First, sOoO
cores require dedicated hardware structures to dynamically compute backward slices. sOoO cores
do so by using the RDT and IST structures. Moreover, the IST needs N read and N write ports to
support an N -wide superscalar pipeline, and the IST needs to be accessed within a single clock
cycle. This may be challenging (or even problematic) for wide and high-frequency pipelines.

3The GAP benchmarks are not considered here because of their small (less than 1%) IST miss rate and small code footprint.
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an stall-on-use in-order core. FSC consists of four in-order queues: non-forward-slice instructions are steered to the
Main Lane (ML), forward-slice instructions are steered to the Dependent Execute Lane (DEL) and the Dependent
Load Lane (DLL); DEL instructions that stall on an L1 D-cache miss are re-directed to the Holding Lane (HL) so
that independent forward-slice instructions can execute as soon as possible.

Second, and more specifically to Freeway, memory disambiguation incurs a non-trivial hardware
cost. In particular, to guarantee that all memory dependences are respected, Freeway marks all
loads and stores with a sequence number in program order, and a store entry is allocated in the
store buffer upon dispatch (instruction steering into one of the queues). When issuing a load, a
look-up is performed in the store buffer to verify whether all older stores have computed their
addresses. A load proceeds only if there are no unresolved and aliasing stores. This operation
requires (i) comparing the sequence number of the load against all stores in the store buffer, and (ii)
an associative comparison of the memory addresses. Overall, the complexity for handling memory
disambiguation in Freeway is significant.

3 FORWARD SLICE CORE
We propose the Forward Slice Core (FSC) microarchitecture to address the aforementioned short-
comings of sOoO cores. Figure 5 provides an overview of the FSC microarchitecture. The general
intuition of the FSC microarchitecture is to steer instructions to different in-order FIFO queues
depending on whether an instruction is a load-consumer, i.e., whether an instruction depends
(directly or indirectly) on an older load. In addition, instructions that depend on an L1 D-cache
miss are re-directed to a separate queue to enable younger independent load-consumers to make
forward progress. We now discuss the various unique components of the FSC microarchitecture.

3.1 Identifying Forward Slices
We define a forward slice as the sequence of instructions that depend (directly or indirectly) on a
load instruction. The FSC microarchitecture identifies forward-slice instructions dynamically in
hardware using a bit vector called the Steering Bit Vector (SBV). The SBV is indexed by a physical
register tag and initially all bits of the vector are cleared. Upon register-renaming a load in the front-
end of the pipeline, the SBV bit corresponding to the destination physical register of the load is set.
When a younger instruction reads (consumes) a physical register for which the corresponding SBV
bit is (still) set, the SBV bit corresponding to the destination physical register of this instruction is
also set. This process propagates the dependence chain of a load forward in the dynamic instruction
stream, hence the name ‘forward slice’.
An SBV bit is cleared when the instruction executes and has computed its destination physical

register. Clearing a steering bit in the SBV indicates that a future instruction reading the corre-
sponding physical register does not need to wait for the execution of the instruction, i.e., its input
register is available and the future instruction can immediately read the value from the physical
register file. In other words, the SBV keeps track of the forward-slice instructions that are still
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waiting for their input registers to be computed. Or, more precisely, the SBV keeps track of the
physical registers that are yet to be written along a load’s forward slice.

3.2 Instruction Steering
We make a distinction when steering or dispatching forward-slice versus non-forward-slice in-
structions. A forward-slice instruction is an instruction for which at least one of the input physical
registers has the SBV bit set. When none of the SBV bits are set, the instruction does not belong to
a forward slice and is therefore a non-forward-slice instruction. Note that the first load of a chain of
dependent instructions is a non-forward-slice instruction; all instructions that directly or indirectly
depend on the load are forward-slice instructions.

Non-forward-slice instructions are sent to the ‘main’ in-order FIFO queue, called the Main Lane
(ML). FSC includes two more FIFO queues for handling forward-slice instructions: a Dependent
Load Lane (DLL) and a Dependent Execute Lane (DEL). Loads among the forward-slice instructions
are dispatched to the DLL, while all other forward-slice instructions are dispatched to the DEL. The
reason for steering load and non-load forward-slice instructions to different queues is to enable
younger independent non-load instructions to execute ahead of older load-dependent loads.
The mechanism for steering instructions in FSC is straightforward. Forward-slice instructions

are steered to the DLL in case of a load, and to the DEL in case of a non-load instruction. Non-
forward-slice instructions are steered to the Main Lane. When a lane is full upon steering a new
instruction, dispatch is stalled. Back-pressure causes the rest of the front-end pipeline to stall.

3.3 Holding Lane
The forward-slice instructions, by definition, wait for data to return from the memory hierarchy.
The number of cycles that forward-slice instructions stall depends on whether and where the load
hits in the memory hierarchy. In case of a hit in the on-chip cache hierarchy, the forward-slice
instructions have to wait for only a couple cycles or at most a dozen cycles. In case of an LLC
miss, on the other hand, the forward-slice instructions need to wait on the order of a hundred or
more cycles. In other words, forward-slice instructions that depend on L1 D-cache misses stall the
DEL/DLL queues for a (large) number of cycles, preventing younger independent forward-slice
instructions to execute, severely limiting performance.
We therefore introduce the Holding Lane (HL). The basic intuition is to gradually filter out

instructions that belong to the forward slices of L1-missing loads and move those instructions to
the HL to allow younger independent forward-slice instructions to execute earlier. In particular,
an instruction at the head of the DEL is moved to the HL when its producer load misses in the L1
D-cache. This is implemented by setting a counter to a pre-set value (i.e., the L1 D-cache access
time) whenever a new instruction reaches the DEL head. The counter is decremented every cycle
and when the counter reaches zero — this denotes an L1 D-cache miss — the instruction at the DEL
head is moved to the HL. The instructions in the DEL are then moved up one place and the counter
is reset to its pre-set value after which it starts decrementing again. A forward slice that depends
on an L1 D-cache miss thus gradually migrates from the DEL to the HL, so that other independent
forward-slice instructions can execute sooner. Note that FSC does not move instructions from the
HL back to the DEL.

The pre-set value is set such that it enables identifying L1 misses in a cost-effective way. In our
experimental setup, we set this value to 4, i.e., the access time to the L1 D-cache. A forward-slice
instruction that waits at the DEL head for four cycles implies that it depends on an L1 miss and
FSC moves the instruction to the HL. This is a hardware-efficient implementation: the counter
implementation allows for determining an L1 miss locally within the core at low overhead. An
alternative implementation would be to notify the core upon an L1 D-cachemiss through a dedicated
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Fig. 6. (a) Instruction dependence graph taken from mcf_r_1’s hot loop illustrating how instructions are
steered (and re-directed) to queues. FSC steers non-forward-slice instructions to the ML and the forward-slice
instructions (i.e., load-consumers) to the DEL and DLL. Instructions in the DEL that depend on an L1 D-cache
miss (e.g., E7 and S8) are re-directed to the HL. and (b) Instruction dependence graph taken from cact_r_1
to illustrate the limitation of an in-order Holding Lane. There are two load forward slices in the HL where
E6 − E7 − S8 has to wait until the younger slice E2 − E3 − S4 has executed.

signal from the L1 D-cache to the core. If the core could be notified upon an L1 miss (possibly with
shorter latency, i.e., tag access latency), FSC could simply redirect instructions to the Holding Lane
based on this notification, thereby eliminating the need for the down counter.

FSC does not re-direct instructions from the DLL to the HL — only DEL instructions are moved
to the HL. We recognize that the DLL head may also stall on long-latency loads in case of miss-
dependent misses, which may happen in pointer-chasing code. Nevertheless, we experimentally
observe a negligible performance impact from filtering out instructions from the DLL to the HL,
in contrast to the DEL. There are two reasons. First, this is an infrequent scenario because the
DLL is stalled less frequently compared to the DEL. For our set of workloads, only 10% of the
instructions are steered to the DLL on average, out of which only a minority depend on L1 D-cache
misses; hence, re-directing these miss-dependent loads to the HL has limited impact. Second, the
opportunity to improve performance is limited. Putting a miss-dependent miss out of the way
quickly leads to the next miss-dependent miss, which does not significantly improve performance.

Note that the instructions are never steered to the HL from the front-end; instructions are only
steered to the ML, DLL and DEL, and forward-slice instructions in the DEL can be re-directed
to the HL. However, instructions are selected for execution on a functional unit from the four
lanes. At most two or three instructions can be issued per cycle in a two-wide and three-wide FSC
implementation, respectively. We use an oldest-first policy for selecting instructions when there
are multiple instructions ready at the heads of the lanes in a given cycle.
We recognize that multiple independent forward slices may reside in the Holding Lane, which

may limit performance as the Holding Lane is an in-order queue. In particular, if the first forward
slice depends on a long-latency load, it may prevent other forward slices from being executed.
We found this to be the case for some of our workloads. Figure 6 (b) shows a code example from
SPEC CPU2017’s cact_r_1: the code consists of two loads (L1 and L5) and their forward slices
(E2 − E3 − S4 and E6 − E7 − S8, respectively) with E arithmetic instructions and S store instructions;
the subscripts denote program order. The forward slices in this example have already been moved to
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the Holding Lane. If load L1 incurs a long-latency miss while L5 is an L1 D-cache hit, this will force
the forward slice of L5 to wait until the first load and its forward slice have executed. This results in
unnecessarily holding up the younger slice for tens of cycles to reach the HL head. In this particular
example, the younger slice has to wait for 36 cycles in total: 28 cycles for E2 to execute, plus 5 for E2
and 3 for E3. The fundamental reason for this delay is the fact that the Holding Lane is an in-order
queue. This observation suggests an opportunity to further improve performance by providing
out-of-order issue logic in the Holding Lane. We implemented and evaluated an out-of-order HL
while keeping the other lanes in-order, and found that it improves performance by 3% on average
(and at most 25%) for the 3-wide configurations. Because an out-of-order HL increases hardware
complexity by a significant margin, we conclude that this is not a favorable design point.

3.4 Store-Address Replication
In FSC, a load instruction is steered to the ML or DLL. A store instruction is broken up in a store-
address (STA) micro-op that computes the memory address and a store-data (STD) micro-op that
performs the actual store operation; the STD depends on the STA through a read-after-write register
dependence. The STD micro-op is steered to the ML or DEL, and may be dynamically re-directed
to the HL. A load instruction may therefore bypass an older store. While executing a load ahead of
an earlier store helps improve performance, one has to be careful and respect through-memory
dependences at all times. In particular, a load that executes before an older (unresolved) store
may possibly read an old value if the load and store reference the same (or overlapping) memory
address(es). Correctly handling memory dependences while executing loads and stores out of
program order requires complex memory disambiguation logic.
We propose Store-Address Replication (SAR) as a simple, yet elegant, solution to the memory

disambiguation problem; SAR is applicable to any multi-queue architecture, including FSC. SAR
replicates the STA micro-op across three lanes (ML, DEL, DLL) upon instruction steering. An STA
micro-op at the head of the DEL may be re-directed to the HL, just like any other instruction.
An STA micro-op is selected for execution if its input register operands are available and if it is
at the head of all three lanes; i.e., the STA micro-op needs to be at the heads of the ML and the
DLL and the DEL or HL. FSC executes the STA micro-op from the ML and discards the duplicate
copies from the other lanes. SAR guarantees that younger loads after the STA micro-op in program
order effectively execute after the STA micro-op. Note that SAR guarantees that STA micro-ops are
ordered with respect to loads, and loads are ordered with respect to STA micro-ops, however, SAR
does not impose any ordering among loads in-between two consecutive STA micro-ops.

3.5 Hardware Complexity
Overall, the hardware cost and complexity is less for FSC compared to Freeway, the state-of-the-art
sOoO core microarchitecture. In our baseline 3-wide configuration, compared to Freeway, FSC
removes the IST (768 bytes), the RDT (1024 bytes), and the loads and store sequence numbers in
the store buffer (32 bytes). FSC requires new structures with minimal hardware cost: the Steering
Bit Vector (16 bytes) and a count-down timer at the DEL head for moving instructions to the HL
(3 bits). In addition, some logic is required for duplicating STA micro-ops at instruction steering
and for re-directing instructions from the DEL to the HL. The steering logic has similar complexity
for FSC and Freeway because both architectures dispatch instructions into three lanes. The total
hardware cost for FSC over an in-order core amounts to 3,540 bytes, versus 5348 bytes for Freeway
— a reduction by 1,808 bytes compared to Freeway.

The above calculation does not account for the content-addressable memory (CAM) logic needed
to support dynamic memory disambiguation in Freeway, which is significant. Recall that LSC
executes loads and stores in program order. Yet, it requires one CAM search in the store buffer to
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Fig. 7. Non-speculative memory disambiguation in FSC. Loads compare their addresses against the addresses in
the store buffer. If a match occurs, the load reads the data value from the store buffer; if not, the load obtains the
data value from the memory hierarchy.

make sure that loads read the most recent value written to memory, i.e., younger loads need to
compare their addresses against the addresses of the older stores in the store buffer, and, in case of
a match, the data value is read from the store buffer. Freeway, in contrast, allows for out-of-order
execution of loads and stores, i.e., loads may execute ahead of older non-aliasing stores. Freeway
therefore incurs additional fields in the store buffer and issue queues for storing the sequence
numbers of loads and stores (98 bytes extra in total). As mentioned before, Freeway allocates an
entry in the store buffer when dispatching a store and the store’s sequence number is inserted.
The address and data value fields are filled in when the store is executed. When issuing a load, the
load’s sequence number needs to be compared against the sequence numbers in the store buffer. A
load can only go ahead and execute if all older stores have computed their addresses. In case there
is an address match between the load and an older store, the load needs to wait for the data value
to be computed. This incurs a significant hardware cost because two CAM searches are needed: (i)
the load’s sequence number needs to be compared against the stores’ sequence numbers in the
store buffer, and (ii) the load address needs to be compared against the store addresses. Overall,
memory disambiguation in Freeway incurs significant hardware complexity over LSC.
In contrast, FSC incurs similar hardware complexity as LSC when it comes to memory disam-

biguation, as shown in Figure 7. Because STA micro-ops are replicated across the different queues
so that younger load instructions can never bypass an older store, a load instruction only needs to
compare its address to the addresses in the store buffer. (There is no need to compare sequence
numbers among loads and stores as in Freeway, because loads execute in program order with
respect to older stores.) If a match is found and the data is available, the load reads the data from
the store buffer; if the data is not available yet, the load stalls waiting for the store data. In case
there is no match, the load goes ahead and obtains the data value from the memory hierarchy. The
hardware complexity of FSC’s memory disambiguation logic is comparable to LSC.

4 EXPERIMENTAL SETUP

Simulation Setup. We faithfully model and evaluate FSC using the most detailed, cycle-level and
hardware-validated core model in Sniper v6.0 [10]. Our baseline configurations are 2-wide and
3-wide superscalar processors as we target embedded and (high-end) mobile processors, see Table 2.
The two-wide in-order baseline core is configured after the ARM Cortex-A7 [4]. We follow the LSC
and Freeway configurations by Kumar et al. [20]. Note that we keep total aggregate issue queue
size constant across all architectures for fair comparison, i.e., 32 and 48 entries for the two-wide
and three-wide configurations, respectively. The FSC lanes (ML, DEL, DLL and HL) contain 8 and
12 entries for the 2-wide and 3-wide configurations, respectively. LSC, Freeway and FSC deploy an
oldest-first issue policy, which selects up to two of the oldest operand-ready instructions from the
two, three and four queues, respectively; up to two instructions can be selected from the same queue.
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Table 2. Simulated two-wide and three-wide InO, LSC, Freeway, FSC and OoO configurations.

Two-wide Configuration Three-wide Configuration
InO LSC Freeway FSC OoO InO LSC Freeway FSC OoO

Scoreboard/ROB 32 64
Register File 32 int, 32 fp 64 int, 64 fp
Store Buffer 16 24
Issue Queue — 2×16 3×12 4×8 1×32 — 2×24 3×16 4×12 1×48
Frequency 2.0 GHz
Branch Predictor 1.5 KB hybrid local/global/loop predictor and BTB
Pipeline Depth 5 front-end pipeline stages
ALUs 2 int add (1 c), 1 int mul (3 c), 1 int div (18 c)

1 fp add (3 c), 1 fp mul (5 c), 1 fp div (6 c)
MMU ports 2 ld/sta, 1 std, 1 sta
L1 I-cache 4-way 32KB, 2 cycles
L1 D-cache 8-way 32KB, 4 cycles (1-cycle tag look-up)
L2 8-way 512 KB, 8 cycles (3-cycle tag look-up)
Memory 3.8 GB/s, 45 ns

We assume perfect memory disambiguation for the OoO core (i.e., perfect memory-dependence
prediction); in Freeway, a load waits for unresolved and aliasing older stores; LSC and FSC execute
loads and stores in program order. The IST is modeled the same way for both LSC and Freeway,
and we assume a 128-entry 2-way set-associative cache with 2/2 read/write ports.

We estimate power consumption and chip area using McPAT [23] and CACTI v6.5 [24] assuming
a 22 nm technology node. Area and per-access power estimates for the newly added FSC hardware
structures are calculated using CACTI. We compute chip area and per-component static power
consumption and per-access power values from CACTI. Dynamic power is calculated by combining
the per-access power values with the activity factors obtained from the timing model, which are
then added to the power consumption numbers provided by McPAT.
Benchmarks. We create representative 1B-instruction SimPoints [34] for the SPEC CPU2017
benchmarks with reference inputs. We sort the benchmarks by increasing number of last-level
cache (LLC) misses per-kilo instructions (MPKI); we note the highest MPKI of 48 for gcc_r_5.
We further consider six graph analytics applications from the GAP benchmark suite [6]: Be-

tweenness Centrality (bc), Breadth-First Search (bfs), Connected Components (cc), PageRank (pr),
Single-Source Shortest Path (sssp) and Triangle Count (tc). These graph workloads exhibit very
different execution characteristics compared to SPEC CPU2017 because of their pointer-chasing
code patterns and low-ILP characteristics. We simulate the graph algorithms in two iterations
where the first iteration is used to warm up the caches, and we report performance for the second
iteration obtained through detailed simulation. Also, we skip the initialization and preprocessing
steps during the formation of the graph using an in-built graph generator with a size of 218 nodes,
formed according to the Kronecker distribution satisfying the Graph500 specifications.
In addition to the native language SPEC CPU2017 and GAP workloads, we also include a set

of managed-language workloads. These workloads typically feature a larger code footprint and
higher I-cache miss rate than SPEC CPU2017, which makes backward slice detection harder, as
previously discussed in Section 2. We use eleven Java workloads from DaCapo [7] using the large
inputs running on top of the Jikes 3.1.2 virtual machine [3]: nine benchmarks are taken from the
DaCapo-9.12-bach benchmark suite, plus an updated version of lusearch which eliminates useless
allocation (lu.fix) [43], and an updated version of pmd which eliminates a scaling bottleneck due to
a large input file (pmd.fix) [13]. We follow best practice in Java performance evaluation by using
replay compilation [8, 17] to eliminate non-determinism introduced by the just-in-time compiler.
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Fig. 8. Performance for the 2-wide LSC, Freeway, FSC and OoO cores normalized to the baseline InO core
for the SPEC CPU2017 benchmarks. FSC improves performance by 61.1% on average compared to an InO core,
versus 35.1% for LSC and 39.2% for Freeway. The OoO core improves performance by 71.4% on average.
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Fig. 9. Performance for the 2-wide cores for (a) GAP and (b) DaCapo. For GAP, FSC outperforms InO by 58.4%
versus 46.5% for LSC and 48.1% for Freeway. For DaCapo, FSC improves performance by 56.6% compared to the
InO baseline, versus 34.6% for LSC and 42.2% for Freeway.

During a profiling run, the optimization level of each method is recorded for the run with the
shortest execution time. The JIT compiler then uses this optimization plan in the measurement run,
optimizing to the correct level the first time it sees each method. To eliminate the perturbation
of the compiler, we measure results during the second invocation, which represents application
steady-state behavior.

5 EVALUATION
We evaluate the following five processor cores: (i) InO, the baseline stall-on-use in-order core, (ii)
LSC, (iii) Freeway, (iv) FSC, and finally (v) OoO, the out-of-order core. We compute per-application
performance as instructions per cycle (IPC) and the average performance across benchmarks is
calculated using the harmonic mean IPC [15]. The below evaluation primarily focuses on 2-wide
versus 3-wide performance results as well as contrasting FSC performance across the different
benchmark suites. The original conference paper [21] provides additional analyses including CPI
stack analysis for individual workloads, lane distribution statistics, ILP and MHP analysis, and
various sensitivity analyses to lane configuration, lane size, number of waiting cycles for HL
re-direction, and memory disambiguation.

5.1 2-Wide Baseline Performance Results
Figure 8 reports performance for all the evaluated 2-wide cores across the SPEC CPU2017 bench-
marks. Overall, FSC achieves substantially higher performance than InO, LSC and Freeway. Relative
to the baseline InO core, LSC and Freeway improve performance by 35.1% and 39.2% on average,
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Fig. 10. Performance for 3-wide LSC, Freeway, FSC and OoO cores normalized to the baseline InO core for
SPEC CPU2017. FSC improves performance by 79.2% on average compared to an InO core, versus 37.2% for LSC
and 41.1% for Freeway.
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Fig. 11. Performance for the 3-wide cores for (a) GAP and (b) DaCapo. For GAP, FSC improves performance by
78.4% versus 46.1% for LSC and 47.4% for Freeway. For DaCapo, FSC improves performance by 76.8% on average
compared to the InO baseline, versus 44.9% for LSC and 54.1% for Freeway.

whereas FSC outperforms the InO core by 61.1%; this is an additional gain of 15.7% (or 21.9 percent-
age point) over Freeway, the state-of-the-art sOoO core.4 Furthermore, FSC performs within 6.0%
(or 10.3 percentage point) of the OoO core, which improves performance by 71.4% over the InO
baseline. By steering instructions to the different FIFO in-order queues based on the notion of a
forward slice and by dynamically re-directing instructions that depend on L1 D-cache misses to a
separate holding lane, FSC is able to bridge a large fraction of the performance gap between an InO
and OoO core.

We obtain similarly good results for the DaCapo and GAP benchmarks, see Figure 9. For DaCapo,
LSC and Freeway improve performance by 34.6% and 42.2% on average compared the InO baseline,
respectively. FSC outperforms the InO core by 56.6%; this is an additional gain of 10.1% (or 14.4
percentage point) over Freeway. For GAP, LSC and Freeway improve performance by 46.5% and
48.1% on average, respectively, while FSC outperforms the InO core by 58.4%; this is an additional
gain of 6.9% (or 10.3 percentage point) over Freeway. FSC is within 3.1% and 3.4% of the OoO core
for the DaCapo and GAP workloads, respectively.

5.2 Increased Pipeline Width
The performance improvement over InO as well as prior sOoO cores increases with increasing
pipeline width. More specifically, FSC yields higher performance improvements for the 3-wide
configurations compared to the 2-wide configurations, see Figure 10 for SPEC CPU2017 and
Figure 11 for DaCapo and GAP. For SPEC CPU2017, LSC and Freeway improve performance by
37.2% and 41.1% on average, respectively, compared to the InO baseline. FSC in contrast outperforms
4The performance for our baseline 2-wide configuration and SPEC CPU2017 benchmarks has changed slightly compared
to the results reported in the original conference paper [21] due to improved modeling of the store-address micro-op, its
dependences and impact on issue port contention.
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Fig. 12. Average CPI stacks for SPEC CPU2017, GAP and DaCapo comparing the 3-wide InO, LSC, Freeway,
FSC andOoOmicroarchitectures. Compared to LSC and Freeway, FSC improves both the base andmemory-related
(L1, L2 and/or DRAM) CPI components across all three benchmark suites.

the InO core by 79.2%; this is an additional gain of 27.1% (or 38.1 percentage point) over Freeway.
FSC performs within 12.8% of the OoO core. The performance benefit for DaCapo and GAP also
increases compared to the 2-wide configurations: FSC outperforms the InO baseline by on average
76.8% and 78.4%, and outperforms Freeway by 14.6% and 21.1%, respectively. FSC performs within
11.1% and 11.8% of the OoO core for DaCapo and GAP, respectively.

It is interesting to contrast the results for the 3-wide configurations against the 2-wide con-
figurations. We note that FSC’s performance improvement over our InO baseline significantly
increases with increasing pipeline width: from 61.1% for 2-wide to 79.2% for 3-wide for SPEC
CPU2017; similarly, from 56.6% to 76.8% for DaCapo, and from 58.4% to 78.4% for GAP. Moreover,
the performance improvement over prior work (Freeway) also widens with increasing pipeline
width. FSC outperforms Freeway by 15.7% for the 2-wide configuration versus 27.1% for the 3-wide
configuration for SPEC CPU2017; similarly for DaCapo and GAP, FSC performance advantage over
Freeway increases from 10.1% to 14.6%, and from 6.9% to 21.1%, respectively.
The fundamental reason why the performance improvement of FSC over InO and the prior

sOoO cores increases with increasing pipeline width is twofold. First, FSC better exploits MHP.
In particular, the three-wide configurations have a larger ROB, i.e., there are more instructions in
flight, and hence there is more opportunity to exploit MHP from the dynamic instruction stream.
A necessary condition for exploitable MHP is that independent misses coincide in the processor
pipeline, which increases with a larger ROB. FSC is hence better capable of extracting MHP that is
inherently available in the instruction stream. Second, FSC better exploits ILP. A wider pipeline is
more sensitive to ILP because there is more opportunity to dynamically schedule instructions and
hide latencies. Because FSC is better able at extracting ILP by steering arithmetic instructions to
multiple queues as opposed to a single queue in the InO and sOoO cores, FSC is able to extract
more ILP. The next section details how FSC extracts high degrees of ILP and MHP.

5.3 CPI Stack Analysis
The fundamental reason why FSC outperforms Freeway (and LSC) is because it improves both
ILP and MHP. This is illustrated in Figure 12 which reports average CPI stacks for the 3-wide
configurations; CPI stacks break up the average number of cycles executed per instruction in
a base component (useful computation) and miss event components due to branch mispredicts,
cache misses, etc. There are several interesting observations to be made here. First, all three sOoO
architectures effectively improve MHP. This is evident from the large reduction we observe for the
combined memory-related CPI components (L1-D, L2 and DRAM) compared to the InO baseline:
average reduction of 38% for LSC, 41% for Freeway and 53% for FSC. As mentioned before, sOoO
cores achieve higher MHP compared to an InO core by moving load-dependent instructions to
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another in-order queue so that younger independent load instructions can soon issue as well,
exposing higher degrees of MHP.
Second, FSC yields the highest MHP improvement of all sOoO architectures. In particular,

compared to the in-order baseline, FSC reduces the memory-related CPI components by 53% on
average and, more specifically, by 53%, 49% and 59% for the SPEC CPU2017, GAP and DaCapo
benchmarks suites, respectively. Compared to Freeway, these components reduce by 21% on average
across the three benchmark suites with a reduction of 24% (SPEC CPU2017), 20% (GAP) and 19%
(DaCapo), respectively. The reason is that FSC does not depend on imprecise backward slice analysis,
and, more importantly, because it moves instructions that depend on load instructions that miss in
L1 or beyond to the Holding Lane so that younger independent load instructions can execute faster.
Finally, FSC significantly improves ILP. LSC and Freeway do not improve the compute CPI

Base component for SPEC CPU2017 and GAP considerably, whereas FSC decreases the compute
component by 32% and 18%, respectively. For DaCapo, we find that LSC and Freeway reduce the
compute component by less than 0.1% and 4.3%, respectively, versus 9.8% for FSC. In other words,
FSC consistently improves ILP across all workload types. The reason is increased opportunity to
expose ILP to the functional units. FSC steers non-load instructions to the ML and DEL lanes, while
DEL instructions may be redirected to the HL. In other words, non-load instructions may be issued
to a functional unit from possibly three lanes (ML, DEL and HL). In contrast, LSC and Freeway
steer non-load instructions that do not contribute to address generation to a single queue only,
limiting the degree of exploitable ILP.

5.4 Performance Analysis across Workloads
It is worth further analyzing how FSC performs across the different benchmark suites. One particu-
larly interesting observation is that the performance improvement through FSC is more robust or
consistent across the three benchmark suites than Freeway. In particular, for the 2-wide configura-
tions, we observe that the performance improvement for Freeway relative to the InO baseline ranges
from 39.2% (SPEC CPU2017) to 48.1% (GAP), which denotes a spread in improved performance of 8.9
percentage points. For FSC on the other hand, we observe that the spread in improved performance
is almost twice as small at 4.5 percentage points, ranging between 56.6% (DaCapo) and 61.1% (SPEC
CPU2017). The situation is even more pronounced for the 3-wide configurations, for which the
spread in performance improvement is more than five times smaller for FSC (between 76.8% and
79.2%, or 2.4 percentage points) than for Freeway (from 41.1% to 54.1% or 13 percentage points). The
fundamental reason is that FSC improves both ILP and MHP, whereas Freeway primarily improves
MHP only, as discussed above. In other words, while prior sOoO microarchitectures are primarily
effective for MHP-intensive workloads, FSC is effective for a broader range of workload types with
varying characteristics in ILP and MHP, which leads to consistent performance improvements.

Another observation worth making is that the performance improvement for FSC compared to
Freeway is higher for SPEC CPU2017 than DaCapo and GAP. Indeed, for the 2-wide cores, FSC
achieves 15.7% higher performance than Freeway for SPEC CPU2017, versus 10.1% for DaCapo
and 6.9% for GAP. This holds even stronger on the 3-wide cores, where FSC achieves 27.1% higher
performance compared to Freeway for SPEC CPU2017 versus 14.6% and 21.1% for DaCapo and
GAP, respectively. The reason is that Freeway achieves a higher performance improvement over
the InO baseline for DaCapo (54.1% for the 3-wide configuration) and GAP (47.4%) than for SPEC
CPU2017 (41.1%), so that, intuitively speaking, there is less headroom left for FSC to improve.
More fundamentally, DaCapo and GAP feature many chains of instructions that depend on L1
D-cache hits and memory accesses, respectively. Freeway (as well as LSC) effectively steers load-
dependent instructions to another queue for improved performance. SPEC CPU2017 exhibits fewer
such dependence chains while featuring more complex dependence graphs between arithmetic
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Table 3. Area and power overhead for the various FSC structures over a baseline three-wide in-order core.

Structure Details Overhead Area Power
(Bytes) (mm2) (mW)

RAT 64 entries 48 0.0079 5.01
PRF 64 int / 64 fp 1,536 0.0652 9.51
SBV 128 entries 16 0.0004 <0.01
ML 12 entries 264 0.0086 2.92
DEL 12 entries 264 0.0086 1.99
DLL 12 entries 264 0.0086 0.73
HL 12 entries 264 0.0086 0.84
ROB 64 entries 640 0.0138 9.15
MSHR 8 entries 52 0.0056 0.55
SQ 24 entries 192 0.0046 1.30
Total 3,540 0.1356 32.00

instructions, which explains why FSC achieves higher ILP improvements than Freeway (and LSC)
for these workloads.
5.5 Hardware Overhead
FSC adds hardware structures over a baseline in-order core. Table 3 lists the size of these hardware
structures (in number of bytes and mm2) over a three-wide baseline. We add a register allocation
table (RAT) for register renaming, a reorder buffer for a maximum of 64 instructions, and a 24-entry
store queue (SQ). The steering bit vector has 128 entries which amounts to 16 bytes. FSC implements
four 12-entry instruction queues (ML, DEL, DLL and HL). We assume a physical register file (PRF)
with 64 integer and 64 floating-point registers. The MSHR is extended to support 8 outstanding
misses.

We use CACTI [24] to estimate chip area overhead. CACTI accounts for the area of circuit-level
structures such as hierarchically repeated wires, arrays, logic and the clock distribution network.
For a 3-wide core, the chip area incurred by the additional FSC structures over a baseline 3-wide
in-order core amounts to 0.14mm2, or a 2.2% increase over a 6.15mm2 baseline InO core. For our
2-wide setup, see our conference paper [21], the additional FSC structures amount to 0.06mm2, or
a 1.0% increase over a 5.98mm2 InO core. As we scale the superscalar pipeline width from 2 to 3,
FSC incurs a 3.9% increase in chip core area. In contrast, scaling the OoO core from a 2-wide to
3-wide configuration increases chip area by 11.8% due to more costly CAM structures. Relative to
the 3-wide OoO core, we find that the FSC core occupies 47% less chip overhead. This is a more
significant saving in chip area as for the 2-wide configurations, i.e., we reported a 37% reduction
in chip area for the 2-wide configurations in the conference paper [21]. The bottomline is that
the reduction in hardware overhead for FSC relative to an OoO baseline increases with increasing
pipeline width.

5.6 Power Consumption
We use McPAT [23] to calculate InO and OoO core power consumption. The power consumed
by the additional FSC hardware structures is modeled using CACTI [24]. Table 3 reports power
consumption for the newly added components for SPEC CPU2017 benchmarks.
For a 3-wide core and SPEC CPU2017, the additional power consumption incurred by the

additional FSC structures over a baseline in-order core amounts to 32mW relative to our baseline
InO core which consumes 3.12W versus 8.15W for the OoO core. Similarly, for a 2-wide setup
reported in the conference paper [21], the additional FSC structures account for 19.4mW, versus
2.99W and 6.95W for the InO and OoO cores, respectively. As we scale the superscalar pipeline
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Fig. 13. Normalized performance for CESP, FSC and OoO for SPEC CPU2017 assuming 3-wide core configu-
rations. FSC improves performance by 11% on average, and up to 28%, compared to CESP.
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Fig. 14. Performance for 3-wide CESP, FSC and OoO configurations for (a) GAP and (b) DaCapo. FSC improves
performance by 7.7% and 16.1% on average over CESP for the GAP and DaCapo benchmark suites, respectively.

width from 2 to 3, FSC incurs a 4.7% increase in power consumption, versus 17.3% for the OoO core.
Relative to an OoO core, FSC significantly reduces power consumption. Moreover, the reduction
increases with increasing pipeline width, from 56.7% for the 2-wide configuration to 61.3% for the
3-wide configuration. In other words, the FSC microarchitecture is more power-efficient for wider
pipelines than an OoO core, relatively speaking.

5.7 Comparison Against CESP
Palacharla et al. [29] propose the complexity-effective superscalar processor (CESP) architecture
which steers chains of dependent instructions into generic in-order queues. Figures 13 and 14
compare FSC against CESP with four queues for SPEC CPU2017, and GAP and DaCapo workloads,
respectively. It is important to note that CESP’s steering logic is more complex than FSC for at
least two reasons: (1) CESP steers instructions into four queues as opposed to FSC which steers
instructions into three queues, and (2) CESP requires a table access to find out in which queue the
producer instruction resides so that chains of dependent instructions are steered to the same queue
— in contrast, FSC incurs even less hardware as it simply steers instructions to the appropriate
queue based on a single SBV bit and instruction type (load vs. non-load).
In spite of its lower hardware complexity, we find that FSC outperforms CESP by 11%, 7.7%

and 16.1% on average (18, 13 and 25 percentage point), and up to 28%, 41% and 33% for a 3-wide
configuration running the SPEC CPU2017, GAP and DaCapo workloads, respectively. The reason
why FSC outperforms CESP is that CESP stalls dispatch when an independent instruction cannot
be steered to an empty queue. In contrast, FSC steers instructions to queues based on whether an
instruction belongs to a forward slice or not, i.e., it does not need to wait for an empty queue in case
of an independent instruction. This is particularly the case for DaCapo: the average 52% performance
improvement for CESP compared to the in-order baseline is relatively small compared to SPEC
CPU2017 (61%) and GAP (65%). FSC is able to overcome the dispatch stalls due to non-empty queues
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Fig. 15. Normalized performance for 3-wide LSC, Freeway, FSC and OoO with a 16-stream stride-based
hardware prefetcher at L1. Performance is normalized to the InO core with prefetcher in all configurations.
FSC improves performance by 38%, 21% and 19% compared to Freeway baseline with hardware prefetching for
SPEC CPU2017, GAP and DaCapo, respectively.

when dispatching independent instructions, thereby yielding the highest performance over CESP
for DaCapo relative to SPEC CPU2017 and GAP. We further observe two anomaly benchmarks,
namely GAP’s cc and bfs, for which FSC performs (slightly) worse than CESP. Detailed analysis
reveals that in the case of cc, a large fraction of instructions are steered to the dependent lanes
(i.e., 53% of the instructions are steered to the DEL, out of which 48% are redirected to the HL,
and 35.5% of the instructions are steered to the DLL), resulting in an imbalance across the lanes,
up to the point that the dependent lanes are getting full. CESP steers load instructions and their
consumers to the same queue, which leads to be a better overall balance across the queues. Finally,
it is interesting to note that the performance improvement over CESP increases with increasing
pipeline width — we reported an average 4.5% (and up to 12.6%) improvement for a 2-wide FSC
configuration and SPEC CPU2017, see the conference paper [21], while we now report an 11%
average improvement for the three-wide configuration.

5.8 Hardware Prefetching
We did not assume hardware prefetching so far, for ease of analysis. We now consider a baseline
architecture with hardware prefetching by adding a stride-based prefetcher at L1, which tracks
up to 16 independent streams. Figure 15 reports normalized performance with the stride-based
prefetcher enabled for all the 3-wide core microarchitectures. For all configurations, performance is
normalized to the InO core with hardware prefetching. It is interesting to note that the performance
improvement achieved by the sOoO cores is higher when hardware prefetching is enabled versus
disabled. The reason is that as performance improves with hardware prefetching enabled, a smaller
fraction of time is spent on stalls due to cache misses, hence a similar improvement in instruction
scheduling leads to a higher impact on performance. This is especially the case for the memory-
intensive benchmarks. On average, for SPEC CPU2017, GAP and DaCapo, we report that with
hardware prefetching enabled, FSC improves performance by 38%, 21% and 19% over Freeway,
respectively. For comparison, without a hardware prefetcher, FSC’s performance improvement over
Freeway equals 27%, 21% and 15%, respectively, as previously reported in Figures 10 and 11. We
therefore conclude that FSC’s relative performance gain over other sOoO cores improves with the
addition of a hardware prefetcher.

6 RELATEDWORK
A significant body of prior work has contributed to making processors more complexity-effective
and power-efficient. We now point out the most closely related work.
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Complexity-Effective Architectures. Palacharla et al. [29] propose the complexity-effective
superscalar processors (CESP) architecture which steers chains of dependent instructions to in-
order queues. Dispatch stalls when an independent instruction cannot be steered to an empty
queue. Salverda and Zilles [31] evaluate CESP in the context of a realistic baseline and point out a
large performance gap with a traditional OoO core because of frequent dispatch stalls. A similar
steering policy is used by Kim et al. [19] in their Instruction-Level Distributed Processing (ILDP)
work, which proposes an ISA with in-order accumulator-based execution units. Our experimental
results show that FSC outperforms CESP.
Salverda and Zilles [32] analyze the fundamental challenges of fusing small in-order cores on

demand into larger cores. They find that fusing small cores is not appealing if those cores support
in-order execution only; some form of out-of-order execution capability is needed to achieve high
performance. In particular, they propose a cost-based steering policy that uses a complex load-
latency predictor such that instructions do not get stuck behind long-latency loads. In contrast,
FSC moves instructions to the Holding Lane based on a simple down-counter. Overall, FSC features
a low-cost and effective instruction steering policy that enables out-of-order execution capabilities
among in-order queues.
Latency-Tolerant Architectures. Prior work proposed various mechanisms to tolerate or hide
memory accesses in traditional out-of-order and in-order cores by exploiting the notion of forward
slices. Lebeck et al. [22] add a 2K-entry Waiting Instruction Buffer (WIB) to an OoO core to
temporarily store forward-slice instructions that directly or indirectly depend on a cache miss.
When the long-latency operation completes, the instructions are reinserted from the WIB into the
issue queue. Runahead execution [14, 25–27] removes the blocking cache miss from the instruction
window and continues to speculatively prefetch future memory addresses till the blocking miss
returns. Continuous Flow Pipelines (CFP) [37] build on top of the CheckPoint and Renaming
(CPR) proposal [1], releasing scheduler and register file resources for off-chip load-dependent
instruction slices. Hilton et al. [16] and Nekkalapu et al. [28] adapt the CFP concept to an in-order
architecture by diverting forward-slice miss-dependent instructions to a slice buffer. When the miss
returns, the miss-dependent instructions are merged back from the slice buffer into the pipeline.
The Sun Rock processor [11] uses Deferred Queues (DQs) to hold forward-slice miss-dependent
instructions and their available operand values. These prior works incur significant complexity.
In particular, CFP, iCFP and Rock rely on complex checkpointing mechanisms to switch between
non-speculative and speculative execution modes. Moreover, memory disambiguation hardware
is required to support out-of-order execution of memory operations. FSC in contrast exploits the
notion of forward slices in the context of restricted out-of-order microarchitectures, incurring
lower complexity compared the above prior works, because (1) it does not rely on checkpointing to
defer forward-slice instructions, and (2) it simply replicates store-address micro-ops across in-order
FIFO queues to resolve memory addresses in program order, eliminating the need for complex
memory disambiguation hardware support.
Decoupled Access-Execute. DAE [36] is the first work to separate access and execute phases of a
program through coordinated queues. Proposals such as speculative-slice execution [44], flea-flicker
multi-pass pipelining [5], braid processing [42] and OUTRIDER [12] also exploit critical instruction
slices [45] for improving performance. More recently, Clairvoyance [40] and SWOOP [41] exploit
the decoupled nature of access and execute phases for improving energy efficiency. These compiler-
based techniques involve new instructions, advanced profiling information, or binary translation
for separating critical instruction slices, unlike FSC.
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Restricted Out-of-Order Microarchitectures.We extensively discussed the Load Slice Core [9]
and Freeway [20] throughout the paper. Shioya et al. [35] propose the front-end execution architec-
ture which executes instructions that have their operands ready in the front-end of the pipeline;
other non-ready instructions are dispatched to the out-of-order back-end. CASINO [18] pursues a
similar goal by augmenting an in-order core with an additional speculative queue from which ready
instructions are executed ahead of a traditional in-order instruction queue. CASINO adds significant
complexity over an in-order core because of the CAM-based selection logic in the speculative queue
and dynamic memory disambiguation.

A number of proposals take an OoO core as a starting point and reduce complexity by bypassing
some of the out-of-order structures. FSC eliminates all out-of-order structures and is therefore
more area- and power-efficient. Long-term parking [33] saves power in an OoO core by allocating
back-end resources for critical instructions while buffering non-critical instructions in the front-end.
More recently, Alipour et al. [2] leverage instruction criticality and readiness to bypass the out-of-
order back-end. Instructions that do not benefit from out-of-order scheduling and instructions that
do not suffer from being delayed are sent to an in-order FIFO queue.

7 CONCLUSION
Slice-out-of-order cores were recently proposed to tackle the in-order issue bottleneck in stall-
on-use in-order processors by allowing loads and stores, plus their backward slices, to bypass
older instructions in the dynamic instruction stream. sOoO cores improve ILP and MHP, yet they
leave significant performance on the table. In particular, backward slice analysis is imprecise while
incurring a non-trivial hardware cost.
In this paper, we propose Forward Slice Core (FSC), a novel core microarchitecture that steers

instructions to in-order FIFO queues based on the notion of forward slices of loads (i.e., the direct and
indirect load-consumers). Forward slices are constructed in a single pass as opposed to backward
slice analysis, which is iterative, imprecise and hardware-inefficient. In addition, FSC re-directs
instructions waiting for an L1 D-cache miss to the Holding Lane. Finally, FSC implements store-
address replication to alleviate the need for expensive dynamic memory disambiguation logic. FSC
outperforms the state-of-the-art sOoO core, Freeway, by 27.1%, 21.1% and 14.6% for SPEC CPU2017,
GAP and DaCapo, respectively, for a 3-wide superscalar configuration, while at the same time
being more power- and hardware-efficient.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers for their thoughtful feedback and comments. This work is
supported by the European Research Council (ERC) Advanced Grant agreement no. 741097, and
FWO project G.0144.17N. Josué Feliu is supported by a Juan de la Cierva Formación Contract
(FJC2018-036021-I).

REFERENCES
[1] H. Akkary, R. Rajwar, and S. T. Srinivasan. Checkpoint processing and recovery: Towards scalable large instruction

window processors. In Proceedings of the Annual IEEE/ACM International Symposium on Microarchitecture (MICRO),
pages 423–434, December 2003.

[2] M. Alipour, S. Kaxiras, D. Black-Schaffer, and R. Kumar. Delay and bypass: Ready and criticality aware instruction
scheduling in out-of-order processors. In Proceedings of the 26th IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 424–434, February 2020.

[3] B. Alpern, C. R. Attanasio, J. J. Barton, M. G. Burke, P. Cheng, J. . Choi, A. Cocchi, S. J. Fink, D. Grove, M. Hind, S. F.
Hummel, D. Lieber, V. Litvinov, M. F. Mergen, T. Ngo, J. R. Russell, V. Sarkar, M. J. Serrano, J. C. Shepherd, S. E. Smith,
V. C. Sreedhar, H. Srinivasan, and J. Whaley. The jalapeño virtual machine. IBM Systems Journal, 39(1):211–238,
January 2000.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2021.



The Forward Slice Core: A High-Performance, Yet Low-Complexity Microarchitecture 1:23

[4] ARM. ARM Cortex-A7 processor. http://www.arm.com/products/processors/cortex-a/cortex-a7.php.
[5] R. D. Barnes, S. Ryoo, andW.W. Hwu. "Flea-flicker" multipass pipelining: An alternative to the high-power out-of-order

offense. In Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO), pages
319–330, November 2005.

[6] Scott Beamer, Krste Asanović, and David Patterson. The GAP benchmark suite. arXiv e-prints, page arXiv:1508.03619,
August 2015.

[7] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khan, K. S. McKinley, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. L. Hosking, M. Jump, H. B. Lee, J. Eliot B. Moss, A. Phansalkar, D. Stefanovic, T. VanDrunen,
D. von Dincklage, and B. Wiedermann. The DaCapo benchmarks: Java benchmarking development and analysis.
In Proceedings of the Annual ACM SIGPLAN Conference on Object-Oriented Programming, Systems, Languages and
Applications (OOPSLA), pages 169–190, October 2006.

[8] Stephen M. Blackburn, Kathryn S. McKinley, Robin Garner, Chris Hoffmann, Asjad M. Khan, Rotem Bentzur, Amer
Diwan, Daniel Feinberg, Daniel Frampton, Samuel Z. Guyer, Martin Hirzel, Antony Hosking, Maria Jump, Han
Lee, J. Eliot B. Moss, Aashish Phansalkar, Darko Stefanovik, Thomas VanDrunen, Daniel von Dincklage, and Ben
Wiedermann. Wake up and smell the coffee: Evaluation methodology for the 21st century. Commun. ACM, 51(8):83–89,
August 2008.

[9] T. E. Carlson, W. Heirman, O. Allam, S. Kaxiras, and L. Eeckhout. The load slice core microarchitecture. In Proceedings
of the 42nd International Symposium on Computer Architecture (ISCA), pages 272–284, June 2015.

[10] T. E. Carlson, W. Heirman, S. Eyerman, I. Hur, and L. Eeckhout. An evaluation of high-level mechanistic core models.
ACM Transactions on Architecture and Code Optimization (TACO), 11(3):28, 2014.

[11] Shailender Chaudhry, Robert Cypher, Magnus Ekman, Martin Karlsson, Anders Landin, Sherman Yip, Håkan Zeffer, and
Marc Tremblay. Simultaneous speculative threading: A novel pipeline architecture implemented in sun’s rock processor.
In Proceedings of the 36th Annual International Symposium on Computer Architecture, ISCA ’09, page 484âĂŞ495, New
York, NY, USA, 2009. Association for Computing Machinery.

[12] N. C. Crago and S. J. Patel. OUTRIDER: Efficient memory latency tolerance with decoupled strands. In Proceedings of
the 38th Annual International Symposium on Computer Architecture (ISCA), pages 117–128, June 2011.

[13] K. Du Bois, J. B. Sartor, S. Eyerman, and L. Eeckhout. Bottle graphs: Visualizing scalability bottlenecks in multi-threaded
applications. In Proceedings of the ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages & Applications (OOPSLA), pages 355–372, October 2013.

[14] J. Dundas and T. Mudge. Improving data cache performance by pre-executing instructions under a cache miss. In
Proceedings of the International Conference on Supercomputing (ICS), pages 68–75, July 1997.

[15] L. Eeckhout. Computer Architecture Performance Evaluation Methods. Synthesis Lectures on Computer Architecture.
Morgan and Claypool Publishers, 2010.

[16] Andrew Hilton, Santosh Nagarakatte, and Amir Roth. iCFP: Tolerating all-level cache misses in in-order processors.
In Proceedings of the 15th IEEE International Symposium on High Performance Computer Architecture (HPCA), pages
431–442, 2009.

[17] S. Blackburn J. Ha, M. Gustafsson and K. S. McKinley. Microarchitectural characterization of production JVMs and
Java workloads. In IBM CAS Workshop, 2008.

[18] I. Jeong, S. Park, C. Lee, and W. W. Ro. CASINO core microarchitecture: Generating out-of-order schedules using
cascaded in-order scheduling windows. In Proceedings of the 26th IEEE International Symposium on High Performance
Computer Architecture (HPCA), pages 383–396, February 2020.

[19] H. Kim and J. E. Smith. An instruction set and microarchitecture for instruction level distributed processing. In
Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA), pages 71–81, June 2002.

[20] Rakesh Kumar, Mehdi Alipour, and David Black-Schaffer. Freeway: Maximizing MLP for slice-out-of-order execution.
In Proceedings of the 25th International Symposium on High-Performance Computer Architecture (HPCA), pages 558–569,
February 2019.

[21] Kartik Lakshminarasimhan, Ajeya Naithani, Josué Feliu, and Lieven Eeckhout. The forward slice core microarchitecture.
In Proceedings of the ACM International Conference on Parallel Architectures and Compilation Techniques (PACT), pages
361–372, October 2020.

[22] A. Lebeck, J. Koppanalil, T. Li, J. Patwardhan, and E. Rotenberg. A large, fast instruction window for tolerating cache
misses. In Proceedings of the 29th Annual International Symposium on Computer Architecture (ISCA), pages 59–70, 2002.

[23] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P. Jouppi. McPAT: An integrated power, area, and
timing modeling framework for multicore and manycore architectures. In Proceedings of the International Symposium
on Microarchitecture (MICRO), pages 469–480, December 2009.

[24] S. Li, K. Chen, J. H. Ahn, J. B. Brockman, and N. P. Jouppi. CACTI-P: Architecture-level modeling for SRAM-based
structures with advanced leakage reduction techniques. In 2011 IEEE/ACM International Conference on Computer-Aided
Design (ICCAD), pages 694–701, December 2011.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2021.

http://www.arm.com/products/processors/cortex-a/cortex-a7.php


1:24 Lakshminarasimhan, et al.

[25] O.Mutlu, J. Stark, C.Wilkerson, and Y. N. Patt. Runahead execution: An alternative to very large instructionwindows for
out-of-order processors. In Proceedings of the 9th International Symposium on High-Performance Computer Architecture
(HPCA), pages 129–140, February 2003.

[26] A. Naithani, S. Ainsworth, T. M. Jones, and L. Eeckhout. Vector runahead. In Proceedings of the 48th International
Symposium on Computer Architecture (ISCA), pages 195–208, 2021.

[27] A. Naithani, J. Feliu, A. Adileh, and L. Eeckhout. Precise runahead execution. In Proceedings of the 26th IEEE Symposium
on High Performance Computer Architecture (HPCA), pages 397–410, 2020.

[28] Satyanarayana Nekkalapu, Haitham Akkary, Komal Jothi, Renjith Retnamma, and Xiaoyu Song. A simple latency
tolerant processor. In 2008 IEEE International Conference on Computer Design, pages 384–389, 2008.

[29] S. Palacharla, N. P. Jouppi, and J. E. Smith. Complexity-effective superscalar processors. In Proceedings of the 24th
Annual International Symposium on Computer Architecture (ISCA), pages 206–218, June 1997.

[30] Research and Markets. 5G revenue and devices forecast. https://www.globenewswire.com/news-release/2020/06/15/
2047817/0/en/5G-Devices-Market-Worth-46-Billion-by-2030-Despite-the-Impact-of-COVID-19.html.

[31] P. Salverda and C. Zilles. Dependence-based scheduling revisited: A tale of two baselines. In Proceedings of the Sixth
Annual Workshop on Duplicating, Deconstructing and Debunking (WDDD), held in conjunction with ISCA, June 2007.

[32] P. Salverda and C. Zilles. Fundamental performance constraints in horizontal fusion of in-order cores. In Proceedings of
the 14th Annual International Symposium on High Performance Computer Architecture (HPCA), pages 252–263, February
2008.

[33] A. Sembrant, T. Carlson, E. Hagersten, D. Black-Shaffer, A. Perais, A. Seznec, and P. Michaud. Long term parking (LTP):
Criticality-aware resource allocation in ooo processors. In Proceedings of the 48th Annual IEEE/ACM International
Symposium on Microarchitecture (MICRO), pages 334–346, February 2015.

[34] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. Automatically characterizing large scale program behavior. In
Proceedings of the 10th International Conference on Architectural Support for Programming Languages and Operating
Systems (ASPLOS), pages 45–57, October 2002.

[35] R. Shioya, M. Goshima, and H. Ando. A front-end execution architecture for high energy efficiency. In Proceedings of
the 47th International Symposium on Microarchitecture (MICRO), pages 419–431, December 2014.

[36] J. E. Smith. Decoupled access/execute computer architectures. In Proceedings of the 9th Annual International Symposium
on Computer Architecture (ISCA), pages 112–119, April 1982.

[37] S. T. Srinivasan, R. Rajwar, H. Akkary, A. Gandhi, and M. Upton. Continual flow pipelines. In Proceedings of the 11th
International Conference on Architectural Support for Programming Languages and Operating Systems (ASPLOS), pages
107–119, October 2004.

[38] Statista. IoT devices forecast. https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-
technology/.

[39] Statista. Smartphone users. https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/.
[40] K. A. Tran, T. E. Carlson, K. Koukos, M. Själander, V. Spiliopoulos, S. Kaxiras, and A. Jimborean. Clairvoyance: Look-

ahead compile-time scheduling. In Proceedings of the International Conference on Code Generation and Optimization
(CGO), pages 171–184, February 2017.

[41] K. A. Tran, A. Jimborean, T. E. Carlson, K. Koukos, M. Själander, and S. Kaxiras. SWOOP: Software-hardware co-design
for non-speculative, execute-ahead, in-order cores. In Proceedings of the 39th ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), pages 328–343, June 2018.

[42] F. Tseng and Y. N. Patt. Achieving out-of-order performance with almost in-order complexity. In Proceedings of the
35th Annual International Symposium on Computer Architecture (ISCA), pages 3–12, June 2008.

[43] Xi Yang, Stephen M. Blackburn, Daniel Frampton, Jennifer B. Sartor, and Kathryn S. McKinley. Why nothing matters:
The impact of zeroing. SIGPLAN Not., 46(10):307–324, October 2011.

[44] C. Zilles and G. Sohi. Execution-based prediction using speculative slices. In Proceedings of the 28th Annual International
Symposium on Computer Architecture (ISCA), pages 2–13, July 2001.

[45] C. B. Zilles and G. S. Sohi. Understanding the backward slices of performance degrading instructions. In Proceedings of
the Annual International Symposium on Computer Architecture (ISCA), pages 172–181, June 2000.

ACM Trans. Arch. Code Optim., Vol. 1, No. 1, Article 1. Publication date: January 2021.

https://www.globenewswire.com/news-release/2020/06/15/2047817/0/en/5G-Devices-Market-Worth-46-Billion-by-2030-Despite-the-Impact-of-COVID-19.html
https://www.globenewswire.com/news-release/2020/06/15/2047817/0/en/5G-Devices-Market-Worth-46-Billion-by-2030-Despite-the-Impact-of-COVID-19.html
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/802690/worldwide-connected-devices-by-access-technology/
https://www.statista.com/statistics/330695/number-of-smartphone-users-worldwide/

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Load Slice Core
	2.2 Freeway
	2.3 Shortcomings of Slice-Out-of-Order Cores

	3 Forward Slice Core
	3.1 Identifying Forward Slices
	3.2 Instruction Steering
	3.3 Holding Lane
	3.4 Store-Address Replication
	3.5 Hardware Complexity

	4 Experimental Setup
	5 Evaluation
	5.1 2-Wide Baseline Performance Results
	5.2 Increased Pipeline Width
	5.3 CPI Stack Analysis
	5.4 Performance Analysis across Workloads
	5.5 Hardware Overhead
	5.6 Power Consumption
	5.7 Comparison Against CESP
	5.8 Hardware Prefetching

	6 Related Work
	7 Conclusion
	References

